Advertisement

Activity and Durability of Platinum-Based Electrocatalysts with Tin Oxide–Coated Carbon Aerogel Materials as Catalyst Supports

  • Fabien Labbé
  • Tristan Asset
  • Marian Chatenet
  • Yasser Ahmad
  • Katia Guérin
  • Rudolf Metkemeijer
  • Sandrine Berthon-FabryEmail author
Original Research

Abstract

Platinum nanoparticles were deposited onto carbon aerogel with three different tin coatings. The coatings were synthesized at pH = 0.7 or 11.5 and with various masses of SnCl2.H2O precursor: 1, 2, and 10 g. The nanoparticles dispersion was found dependent on the morphological properties of the support, i.e., its specific surface, porosity, and coverage by tin oxide. The material electrochemical activity for the oxygen reduction reaction (ORR) and stability was investigated: two accelerated stress tests (ASTs), mimicking either a base-load cycle procedure (P1) or a start-stop procedure (P2), were performed at T = 80 °C. The sample coated at pH = 0.7 and the sample with the lowest loading, deposited at pH = 11.5, exhibited interesting performances, both in term of stability (under P1) and activity. On the contrary, samples with highly covering tin oxide coating displayed unsatisfactory initial performances, owing to the low electrical conductivity of their catalytic support. In any case, the aging under P2 leads in a dramatic decrease of the electrocatalyst activity. This either resulted from (i) the low degree of organization of the carbon aerogel, the latter being prone to harsh corrosion when non-covered by the tin oxide, or (ii) by the chemical changes undergone by the tin oxide during the AST, leading to the formation of an amorphous, low electrical conductivity support.

Graphical Abstract

Keywords

Carbon aerogel Tin oxide Composite Electrocatalyst Durability PEMFC 

Notes

Acknowledgements

The authors wish to thank Pierre Ilbizian for the help with supercritical drying, Suzanne Jacomet for the SEM analysis, Gabriel Monge for the XRD (CEMEF-MINES ParisTech), and Capenergies and Tenerrdis for their support. MC thanks the French IUF for its support.

Funding Information

The French National Research Agency program, (ANR-14-CE05-0047 project CORECAT) funded this work. Some of this work has also been funded within the framework of the Centre of Excellence of Multifunctional Architectured Materials “CEMAM” n° AN-10-LABX-44-01.

Supplementary material

12678_2018_505_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. 1.
    Department of Energy (DoE), Fuel cell technologies office multi-year research, development, and demonstration - plan section 3.4 fuel cells section (2016)Google Scholar
  2. 2.
    J. Wu, X. Zi, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184(1), 104–119 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Sasaki, F. Takasaki, Z. Noda, S. Hayashi, Y. Shiratori, K. Ito, Alternative electrocatalyst support materials for polymer electrolyte fuel cells. Polym. Electrolyte Fuel Cells 10 Pts 1 2 33, 473 (2010)Google Scholar
  4. 4.
    L. Castanheira, L. Dubau, M. Mermoux, G. Berthome, N. Caque, E. Rossinot, M. Chatenet, Carbon corrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane electrode assemblies. ACS Catal. 4(7), 2258–2267 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 5(4), 2184–2194 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J. Power Sources 130(1–2), 42–49 (2004)CrossRefGoogle Scholar
  7. 7.
    F.A. De Bruijn, V.A.T. Dam, G.J.M. Janssen, Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8, 3 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Environmental Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell : Inlet vs . outlet and channel vs . land. Appl. Catal. B Environ. 138–139, 416 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R.L. Borup, G. Maranzana, O. Lottin, High potential excursions during PEM fuel cell operation with dead-ended anode. J. Electrochem. Soc. 162(10), F1212–F1220 (2015)CrossRefGoogle Scholar
  10. 10.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D.L. Yang, M.L. Perry, T.D. Jarvi, A reverse-current decay mechanism for fuel cells. Electrochem. Solid State Lett. 8(6), A273 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Tang, Z. Qi, M. Ramani, J.F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 158(2), 1306–1312 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Kinoshita, J. Bett, Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11(4), 403–411 (1973)CrossRefGoogle Scholar
  13. 13.
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, Carbon support oxidation in PEM fuel cell cathodes. J. Power Sources 176(2), 444–451 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Willsau, J. Heitbaum, The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—A dems study. J. Electroanal. Chem. Interfacial Electrochem. 161(1), 93–101 (1984)CrossRefGoogle Scholar
  15. 15.
    L.M. Roen, C.H. Paik, T.D. Jarvic, Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid State Lett. 7(1), A19 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Dubau, L. Castanheira, M. Chatenet, F. Maillard, J. Dillet, G. Maranzana, S. Abbou, O. Lottin, G. De Moor, A. El Kaddouri, C. Bas, L. Flandin, E. Rossinot, N. Caqué, Carbon corrosion induced by membrane failure: the weak link of PEMFC long-term performance. Int. J. Hydrog. Energy 39(36), 21902–21914 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J.C. Perrin, E. Moukheiber, A. Elkaddouri, G. De Moor, C. Bas, L. Flandin, N. Caqué, A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdiscip. Rev. Energy Environ. 3, 540 (2014)CrossRefGoogle Scholar
  18. 18.
    S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson, Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127(1–2), 127–134 (2004)CrossRefGoogle Scholar
  19. 19.
    B. Wickman, H. Gronbeck, P. Hanarp, B. Kasemo, Corrosion induced degradation of Pt/C model electrodes measured with electrochemical quartz crystal microbalance. J. Electrochem. Soc. 157(4), B592 (2010)CrossRefGoogle Scholar
  20. 20.
    S.C. Ball, S.L. Hudson, D. Thompsett, B. Theobald, An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2V potentiostatic hold regimes at a range of temperatures. J. Power Sources 171(1), 18–25 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Schlogl, K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, Identical-location TEM investigations of Pt/C electrocatalyst degradation at elevated temperatures. J. Electroanal. Chem. 662(2), 355–360 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochim. Acta 110, 273-281 (2013)Google Scholar
  23. 23.
    V. Parry, E. Appert, J.-C. Joud, Characterisation of wettability in gas diffusion layer in proton exchange membrane fuel cells. Appl. Surf. Sci. 256(8), 2474–2478 (2010)CrossRefGoogle Scholar
  24. 24.
    K.H. Radeke, K.O. Backhaus, A. Swiatkowski, Electrical conductivity of activated carbons. Carbon 29(1), 122–123 (1991)CrossRefGoogle Scholar
  25. 25.
    M. Polovina, B. Babić, B. Kaluderović, A. Dekanski, Surface characterization of oxidized activated carbon cloth. Carbon 35(8), 1047–1052 (1997)CrossRefGoogle Scholar
  26. 26.
    W. Vielstich, H. A. Gasteiger, and H. Yokokawa, Handbook of fuel cells: fundamentals technology and applications: advances in electrocatalysis, materials, diagnostics and durability (John Wiley & Sons, 2009)Google Scholar
  27. 27.
    L. Li, Y. Xing, Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J. Electrochem. Soc. 153(10), A1823 (2006)CrossRefGoogle Scholar
  28. 28.
    Y. Shao, G. Yin, J. Zhang, Y. Gao, Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochim. Acta 51(26), 5853–5857 (2006)CrossRefGoogle Scholar
  29. 29.
    G.M. Swain, The use of CVD diamond thin films in electrochemical systems. Adv. Mater. 6(5), 388–392 (1994)CrossRefGoogle Scholar
  30. 30.
    L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl. Catal. A Gen. 497, 198–210 (2015)CrossRefGoogle Scholar
  32. 32.
    K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)CrossRefGoogle Scholar
  33. 33.
    V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)CrossRefGoogle Scholar
  34. 34.
    P. Hernández-Fernández, M. Montiel, P. Ocón, J.L.G. de la Fuente, S. García-Rodríguez, S. Rojas, J.L.G. Fierro, Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell. Appl. Catal. B Environ. 99(1–2), 343–352 (2010)CrossRefGoogle Scholar
  35. 35.
    Y. Shao, G. Yin, Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 171(2), 558–566 (2007)CrossRefGoogle Scholar
  36. 36.
    X. Zhao, A. Hayashi, Z. Noda, K. Kimijima, I. Yagi, K. Sasaki, Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells. Electrochim. Acta 97, 33–41 (2013)CrossRefGoogle Scholar
  37. 37.
    K. Kinoshita, Carbon: electrochemical and physicochemical properties (John Wiley & Sons, New York, 1988)Google Scholar
  38. 38.
    S. Berthon-Fabry, L. Dubau, Y. Ahmad, K. Guérin, M. Chatenet, First insight into fluorinated Pt/carbon aerogels as more corrosion-resistant electrocatalysts for proton exchange membrane fuel cell cathodes. Electrocatalysis 6, 521 (2015)Google Scholar
  39. 39.
    T. Asset, R. Chattot, F. Maillard, L. Dubau, Y. Ahmad, N. Batisse, M. Dubois, K. Guérin, F. Labbe, R. Metkemeijer, S. Berthon-Fabry, M. Chatenet, Activity and durability of platinum-based electrocatalysts supported on bare or fluorinated nanostructured carbon substrates. J. Electrochem. Soc. 165(6), F3346–F3358 (2018)CrossRefGoogle Scholar
  40. 40.
    E. Antolini, E.R. Gonzalez, Polymer supports for low-temperature fuel cell catalysts. Appl. Catal. A Gen. 365(1), 1–19 (2009)CrossRefGoogle Scholar
  41. 41.
    Z. Qi, P.G. Pickup, High performance conducting polymer supported oxygen reduction catalysts. Chem. Commun. 0, 2299 (1998)CrossRefGoogle Scholar
  42. 42.
    H. Meng, P.K. Shen, Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. J. Phys. Chem. B 109(48), 22705–22709 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    O. Lori, S. Gonen, L. Elbaz, Highly active, corrosion-resistant cathode for fuel cells, based on platinum and molybdenum carbide. J. Electrochem. Soc. 164(7), F825–F830 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Zhang, H. Zhu, H. Yu, J. Hou, B. Yi, P. Ming, The oxidation resistance of tungsten carbide as catalyst support for proton exchange membrane fuel cells. Chin. J. Catal. 28(2), 109–111 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Yin, S. Mu, M. Pan, Z. Fu, A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells. J. Power Sources 196(19), 7931–7936 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Yin, S. Mu, H. Lv, N. Cheng, M. Pan, Z. Fu, A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Appl. Catal. B Environ. 93(3–4), 233–240 (2010)CrossRefGoogle Scholar
  47. 47.
    B. Avasarala, T. Murray, W. Li, P. Haldar, Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. 19(13), 1803 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Xiao, G. Zhan, Z. Fu, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu, Z. Wei, Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction. J. Power Sources 284, 296–304 (2015)CrossRefGoogle Scholar
  49. 49.
    K.E. Fritz, P.A. Beaucage, F. Matsuoka, U. Wiesner, J. Suntivich, Mesoporous titanium and niobium nitrides as conductive and stable electrocatalyst supports in acid environments. Chem. Commun. 53, 7250 (2017)CrossRefGoogle Scholar
  50. 50.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)PubMedCrossRefGoogle Scholar
  51. 51.
    S. Henning, L. Kühn, J. Herranz, J. Durst, T. Binninger, M. Nachtegaal, M. Werheid, W. Liu, M. Adam, S. Kaskel, A. Eychmüller, T.J. Schmidt, Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction. J. Electrochem. Soc. 163(9), F998–F1003 (2016)CrossRefGoogle Scholar
  52. 52.
    S. Henning, H. Ishikawa, L. Kühn, J. Herranz, E. Müller, A. Eychmüller, T.J. Schmidt, Angew. Unsupported Pt-Ni aerogels with enhanced high current performance and durability in fuel cell cathodes. Chem. - Int. Ed 56, 10707 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Henning, L. Kühn, J. Herranz, M. Nachtegaal, R. Hübner, M. Werheid, A. Eychmüller, T.J. Schmidt, Effect of acid washing on the oxygen reduction reaction activity of Pt-Cu aerogel catalysts. Electrochim. Acta 233, 210–217 (2017)CrossRefGoogle Scholar
  54. 54.
    M. Oezaslan, F. Hasché, P. Strasser, PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J. Electrochem. Soc. 159(4), B444–b454 (2012)CrossRefGoogle Scholar
  55. 55.
    A. Bruix, A. Migani, G.N. Vayssilov, K.M. Neyman, J. Libuda, F. Illas, Effects of deposited Pt particles on the reducibility of CeO2(111). Phys. Chem. Chem. Phys. 13(23), 11384 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    T. Yu, J. Zeng, B. Lim, Y. Xia, aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv. Mater. 22(45), 5188–5192 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    M. Wesselmark, B. Wickman, C. Lagergren, G. Lindbergh, Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells. Electrochim. Acta 55(26), 7590–7596 (2010)CrossRefGoogle Scholar
  58. 58.
    Y. Suzuki, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells. Electrochem. Solid State Lett. 10(7), B105 (2007)CrossRefGoogle Scholar
  59. 59.
    A.J. Martín, A.M. Chaparro, L. Daza, Single cell study of electrodeposited cathodic electrodes based on Pt–WO3 for polymer electrolyte fuel cells. J. Power Sources 196(9), 4187–4192 (2011)CrossRefGoogle Scholar
  60. 60.
    S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131(39), 13898–13899 (2009)PubMedCrossRefGoogle Scholar
  61. 61.
    C. Beauger, L. Testut, S. Berthon-Fabry, F. Georgi, L. Guetaz, Doped TiO 2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater. 232, 109–118 (2016)CrossRefGoogle Scholar
  62. 62.
    K.-W. Park, K.-S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem. Commun. 9(9), 2256–2260 (2007)CrossRefGoogle Scholar
  63. 63.
    T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7(2), 183–188 (2005)CrossRefGoogle Scholar
  64. 64.
    T. Ioroi, H. Senoh, S.-I. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Stability of corrosion-resistant magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155(4), B321 (2008)CrossRefGoogle Scholar
  65. 65.
    B. Seger, A. Kongkanand, K. Vinodgopal, P.V. Kamat, Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell. J. Electroanal. Chem. 621(2), 198–204 (2008)CrossRefGoogle Scholar
  66. 66.
    H. Chhina, S. Campbell, O. Kesler, An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources 161(2), 893–900 (2006)CrossRefGoogle Scholar
  67. 67.
    Y. Takabatake, Z. Noda, S.M. Lyth, A. Hayashi, K. Sasaki, Cycle durability of metal oxide supports for PEFC electrocatalysts. Int. J. Hydrog. Energy 39(10), 5074–5082 (2014)CrossRefGoogle Scholar
  68. 68.
    Y.-C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11(13), 2698–2713 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    G. Ozouf, G. Cognard, F. Maillard, M. Chatenet, L. Guétaz, M. Heitzmann, P.A. Jacques, C. Beauger, Sb-doped SnO2aerogels based catalysts for proton exchange membrane fuel cells: Pt deposition routes, electrocatalytic activity and durability. J. Electrochem. Soc. 165(6), F3036–F3044 (2018)CrossRefGoogle Scholar
  70. 70.
    G. Ozouf, C. Beauger, Niobium- and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells. J. Mater. Sci. 51, 5305 (2016)CrossRefGoogle Scholar
  71. 71.
    G. Cognard, G. Ozouf, C. Beauger, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, M. Chatenet, F. Maillard, Pt nanoparticles supported on niobium-doped tin dioxide: impact of the support morphology on Pt utilization and electrocatalytic activity. Electrocatalysis 8(1), 51–58 (2017)CrossRefGoogle Scholar
  72. 72.
    G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto, L. Dubau, R. Chattot, M. Chatenet, F. Maillard, Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Appl. Catal. B Environ. 201, 381–390 (2017)CrossRefGoogle Scholar
  73. 73.
    G. Cognard, G. Ozouf, C. Beauger, L. Dubau, M. López-Haro, M. Chatenet, F. Maillard, Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges. Electrochim. Acta 245, 993–1004 (2017)CrossRefGoogle Scholar
  74. 74.
    X. Liu, J. Chen, G. Liu, L. Zhang, H. Zhang, B. Yi, Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J. Power Sources 195(13), 4098–4103 (2010)CrossRefGoogle Scholar
  75. 75.
    L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Substrate effect on oxygen reduction electrocatalysis. Electrochim. Acta 55(26), 7558–7563 (2010)CrossRefGoogle Scholar
  76. 76.
    B. Gao, C. Peng, G.Z. Chen, G. Li Puma, Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Appl. Catal. B Environ. 85(1–2), 17–23 (2008)CrossRefGoogle Scholar
  77. 77.
    Z. Li, B. Gao, G.Z. Chen, R. Mokaya, S. Sotiropoulos, G. Li Puma, Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B Environ. 110, 50–57 (2011)CrossRefGoogle Scholar
  78. 78.
    L. Xiong, A. Manthiram, Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim. Acta 49(24), 4163–4170 (2004)CrossRefGoogle Scholar
  79. 79.
    Y. Bing, V. Neburchilov, C. Song, R. Baker, A. Guest, D. Ghosh, S. Ye, S. Campbell, J. Zhang, Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochim. Acta 77, 225–231 (2012)CrossRefGoogle Scholar
  80. 80.
    B. Ruiz Camacho, C. Morais, M.A. Valenzuela, N. Alonso-Vante, Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites. Catal. Today 202, 36–43 (2013)CrossRefGoogle Scholar
  81. 81.
    K. Sasaki, L. Zhang, R.R. Adzic, Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys. 10(1), 159–167 (2008)PubMedCrossRefGoogle Scholar
  82. 82.
    D. Puthusseri, T.T. Baby, V. Bhagavathi Parambhath, R. Natarajan, R. Sundara, Carbon nanostructure grown using bi-metal oxide as electrocatalyst support for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 38(15), 6460–6468 (2013)CrossRefGoogle Scholar
  83. 83.
    Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, S. Knights, Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. Int. J. Hydrog. Energy 36(17), 11085–11092 (2011)CrossRefGoogle Scholar
  84. 84.
    C. Du, M. Chen, X. Cao, G. Yin, P. Shi, A novel CNT@SnO2 core–sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem. Commun. 11(2), 496–498 (2009)CrossRefGoogle Scholar
  85. 85.
    J. Jia, H. Wang, S. Ji, H. Yang, X. Li, R. Wang, SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochim. Acta 141, 13–19 (2014)CrossRefGoogle Scholar
  86. 86.
    J. Xu, D. Aili, Q. Li, C. Pan, E. Christensen, J.O. Jensen, W. Zhang, G. Liu, X. Wang, N.J. Bjerrum, Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions. J. Mater. Chem. A 1(34), 9737 (2013)CrossRefGoogle Scholar
  87. 87.
    S.J. Tauster, S.C. Fung, Strong metal-support interactions: occurrence among the binary oxides of groups IIA?VB. J. Catal. 55(1), 29–35 (1978)CrossRefGoogle Scholar
  88. 88.
    N. Kamiuchi, T. Matsui, R. Kikuchi, K. Eguchi, Nanoscopic observation of strong chemical interaction between Pt and Tin oxide. J. Phys. Chem. C 111(44), 16470–16476 (2007)CrossRefGoogle Scholar
  89. 89.
    C. Brieger, J. Melke, N. van der Bosch, U. Reinholz, H. Riesemeier, A. Guilherme Buzanich, M.K. Kayarkatte, I. Derr, A. Schökel, C. Roth, A combined in-situ XAS–DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure. J. Catal. 339, 57–67 (2016)CrossRefGoogle Scholar
  90. 90.
    S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 208, 96–119 (2012)CrossRefGoogle Scholar
  91. 91.
    P.Y. You, S.K. Kamarudin, Recent progress of carbonaceous materials in fuel cell applications: An overview. Chem. Eng. J. 309, 489 (2017)CrossRefGoogle Scholar
  92. 92.
    P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5–42 (2014)CrossRefGoogle Scholar
  93. 93.
    E. Antolini, E.R. Gonzalez, Tungsten-based materials for fuel cell applications. Appl. Catal. B Environ. 96(3–4), 245–266 (2010)CrossRefGoogle Scholar
  94. 94.
    E. Antolini, E.R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180(9-10), 746–763 (2009)CrossRefGoogle Scholar
  95. 95.
    F. Labbé, E. Disa, Y. Ahmad, K. Guérin, T. Asset, F. Maillard, M. Chatenet, R. Metkemeijer, S. Berthon-Fabry, Tin dioxide coated carbon materials as an alternative catalyst support for PEMFCs: Impacts of the intrinsic carbon properties and the synthesis parameters on the coating characteristics. Microporous Mesoporous Mater. 271, 1–15 (2018)CrossRefGoogle Scholar
  96. 96.
    H.-S. Oh, J.-G. Oh, Y.-G. Hong, H. Kim, Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications. Electrochim. Acta 52(25), 7278–7285 (2007)CrossRefGoogle Scholar
  97. 97.
    R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRefGoogle Scholar
  98. 98.
    J. Marie, S. Berthon-Fabry, P. Achard, M. Chatenet, A. Pradourat, E. Chainet, Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J. Non-Cryst. Solids 350, 88–96 (2004)CrossRefGoogle Scholar
  99. 99.
    W.Q. Han, A. Zettl, Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3(5), 681–683 (2003)CrossRefGoogle Scholar
  100. 100.
    J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60(1–3), 1–17 (2003)CrossRefGoogle Scholar
  101. 101.
    D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4(02), 385–393 (1989)CrossRefGoogle Scholar
  102. 102.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)CrossRefGoogle Scholar
  103. 103.
    T. Asset, N. Job, Y. Busby, A. Crisci, V. Martin, V. Stergiopoulos, C. Bonnaud, A. Serov, P. Atanassov, R. Chattot, L. Dubau, F. Maillard, Porous hollow PtNi/C electrocatalysts: carbon support considerations to meet performance and stability requirements. ACS Catal. 8(2), 893–903 (2018)CrossRefGoogle Scholar
  104. 104.
    A.A.P.C.C. Herrmann, G.G. Perrault, Dual reference electrode for electrochemical pulse studies. Anal. Chem. 40(7), 1173–1174 (1968)CrossRefGoogle Scholar
  105. 105.
    L. Dubau, F. Maillard, Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts. Electrochem. Commun. 63, 65–69 (2016)CrossRefGoogle Scholar
  106. 106.
    M.S. Wilson, F.H. Garzon, K.E. Sickafus, S. Gottesfeld, Surface area loss of supported platinum in polymer electrolyte fuel cells. J. Electrochem. Soc. 140(10), 2872 (1993)CrossRefGoogle Scholar
  107. 107.
    Y. Shao-Horn, P. J. Ferreira, O. La, D. Morgan, H. Gasteiger, R. Makharia, Coarsening of Pt nanoparticles in proton exchange membrane fuel cells upon potential cycling. ECS Transactions, 1, 185 (2005)Google Scholar
  108. 108.
    M.S. Spencer, Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts. J. Catal. 93(2), 216–223 (1985)CrossRefGoogle Scholar
  109. 109.
    B. Vion-Dury, M. Chatenet, L. Guetaz, F. Maillard, Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation mechanism in model PEMFC cathode environment. ECS Transactions, 41, 697 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MINES ParisTech, PERSEE-Centre procédés, énergies renouvelables et systèmes énergétiquesPSL UniversitySophia Antipolis CedexFrance
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes) LEPMIGrenobleFrance
  3. 3.LEPMIUniversity of Savoie Mont BlancChambéryFrance
  4. 4.French University InstituteParisFrance
  5. 5.Clermont Université, ICCFClermont-FerrandFrance
  6. 6.CNRS, ICCF, UMR 6296AubièreFrance
  7. 7.Fahad Bin Sultan UniversityTabukKingdom of Saudi Arabia

Personalised recommendations