The Role of Surface Functionalities in PtGe and PtIn Catalysts for Direct Methanol Fuel Cells

  • Natalia S. Veizaga
  • Virginia I. Rodriguez
  • Mariano Bruno
  • Sergio R. de Miguel
Original Research


Bimetallic PtGe and PtIn catalysts were prepared over Vulcan carbon (VC) and multiwall carbon nanotubes (NT) by conventional impregnation method (CI). These supports were functionalized with citric or nitric acid. The structural and electrochemical characteristics of the different functionalized supported catalysts were analyzed in order to determine the influence of the functional groups. The methods applied were temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), cyclohexane dehydrogenation reaction (CHD), and CO stripping. The functionalization treatment with citric or nitric acid eases CO oxidation to CO2, decreasing poisoning effect of CO over Pt, due to the development of oxygenated groups on support surfaces and in the nearby Ge and In. Bimetallic catalysts supported on carbons functionalized with HNO3 present increasing electrochemical active surface values, indicating a better electrochemical behavior than the corresponding monometallic catalysts. DMFC experiments show a very good behavior of PtGe catalysts, mainly for those supported on HNO3-functionalized NT, reaching a maximum power density of 80 mW cm−2. Conversely, PtIn catalysts exhibit a very poor behavior.

Graphical Abstract


PtGe/C and PtIn/C electrocatalysts DMFC Conventional impregnation method Citric and nitric acid functionalized carbons 



This work was financially supported by Universidad Nacional del Litoral and CONICET.


  1. 1.
    W. Yu, Z. Xin, W. Zhang, Y. Xie, J. Wang, S. Niu, Y. Wu, L. Shao, The role of surface functionalities in fabricating supported Pd-P nanoparticles for efficient formic acid oxidation. Chem. Phys. Lett. 686, 155–160 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Gong, Z. Yang, K. Li, J. Ge, C. Liu, W. Xing, J. Energy Chem. 27, 1618 (2018)
  3. 3.
    A.S. Aricó, S. Srinivasan, V. Antonucci, Fuel Cells 1, 133 (2001)CrossRefGoogle Scholar
  4. 4.
    S.M.M. Ehteshamia, S.H. Chana, Electrochim. Acta 93, 334 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Öztürk, A. B. Yurtcan, Int. J. Hydrog. Energy 43, 18559 (2018)
  6. 6.
    A.F. Holloway, G.G. Wildgoose, R.G. Compton, L. Shao, M.L.H. Green, J. Solid State Electrochem. 12, 1337 (2008)CrossRefGoogle Scholar
  7. 7.
    J.P. Tessonnier, D. Rosenthal, T.W. Hansen, C. Hess, M.E. Schuster, R. Blume, F. Girgsdies, N. Pfänder, O. Timpe, D.S. Su, R. Schlögl, Carbon 47, 1779 (2009)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, D. Higgins, Z. Chen, Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48(11), 3057–3065 (2010)CrossRefGoogle Scholar
  9. 9.
    L. Panchakarla, A. Govindaraj, C. Rao, Inorg. Chim. Acta 363, 4163 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, R. O’Hayre, Energy Environ. Sci. 3, 1437 (2010)CrossRefGoogle Scholar
  11. 11.
    G.C. Torres, E.L. Jablonski, G.T. Baronetti, A.A. Castro, S.R. de Miguel, O.A. Scelza, D.M. Blanco, M.A. Peña Jimenez, J.L.G. Fierro, Appl. Catal. A Gen. 161, 213 (1997)CrossRefGoogle Scholar
  12. 12.
    I.M.J. Vilella, S.R. de Miguel, C. Salinas-Martínez de Lecea, A. Linares-Solano, O.A. Scelza, Appl. Catal. A Gen. 281(1-2), 247–258 (2005)CrossRefGoogle Scholar
  13. 13.
    C.K. Poh, S.H. Lim, H. Pan, J. Lin, J.Y. Lee, J. Power Sources 176, 70 (2008)CrossRefGoogle Scholar
  14. 14.
    M.A. Fraga, E. Jordao, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo, J. Catal. 209, 355 (2002)CrossRefGoogle Scholar
  15. 15.
    S.R. de Miguel, J.I. Vilella, E.L. Jablonski, O.A. Scelza, C. Salinas-Martinez de Lecea, A. Linares-Solano, Appl. Catal. A: Gen. 232, 237 (2002)CrossRefGoogle Scholar
  16. 16.
    N.S. Veizaga, V.I. Rodriguez, S.R. de Miguel, J. Electrochem. Soc. 164, F22 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Faraday Discuss. 125, 357 (2004)CrossRefGoogle Scholar
  18. 18.
    G. Haller, J. Catal. 216, 12 (2003)CrossRefGoogle Scholar
  19. 19.
    D.N. Blakely, G.A. Somorjai, J. Catal. 42, 181 (1976)CrossRefGoogle Scholar
  20. 20.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Co., Physical. Electronics (1979)Google Scholar
  21. 21.
    J.P. Stassi, P.D. Zgolicz, V.I. Rodríguez, S.R. de Miguel, O.A. Scelza, Appl. Catal. A: Gen. 497, 58 (2015)CrossRefGoogle Scholar
  22. 22.
    S.A. Bocanegra, O.A. Scelza, S.R. de Miguel, Appl. Catal. A: Gen. 468, 135 (2013)CrossRefGoogle Scholar
  23. 23.
    N.S. Veizaga, V.A. Paganin, T.A. Rocha, O.A. Scelza, S.R. de Miguel, E.R. Gonzalez, Int. J. Hydrog. Energy 39, 8728 (2014)CrossRefGoogle Scholar
  24. 24.
    E.M. Crabb, M.K. Ravikumar, Electrochim. Acta 46, 1033 (2001)CrossRefGoogle Scholar
  25. 25.
    L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M.J. Lazaro, J. Power Sources 192, 144 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natalia S. Veizaga
    • 1
  • Virginia I. Rodriguez
    • 1
  • Mariano Bruno
    • 2
  • Sergio R. de Miguel
    • 1
  1. 1.Instituto de Investigaciones en Catálisis y Petroquímica “Ing. José Miguel Parera” (INCAPE)Facultad de Ingeniería Química (UNL)-CONICETSanta FeArgentina
  2. 2.Departamento de Física de la Materia CondensadaComisión Nacional de Energía AtómicaSan MartínArgentina

Personalised recommendations