, Volume 10, Issue 1, pp 72–81 | Cite as

On an Easy Way to Prepare Fe, S, N Tri-Doped Mesoporous Carbon Materials as Efficient Electrocatalysts for Oxygen Reduction Reaction

  • Sa LiuEmail author
  • Liwen Liu
  • Xiaowen Chen
  • Zheng Yang
  • Mengli Li
  • Yan Wang
  • Wenjie Lv
  • Ping Zhu
  • Xinsheng ZhaoEmail author
  • Guoxiang Wang
Original Research


Recently, precious metal-free and heteroatom functionalized carbon materials are widely considered as the promising candidates for oxygen reduction reaction (ORR). However, it is still a challenge to controllably prepare the carbon-based electrocatalysts with desirable activities. Herein, we demonstrate a simple strategy to synthesize the Fe/S/N tri-doped mesoporous carbon (Fe-S,N-C) materials as electrocatalysts for ORR. The resultant Fe-S,N-C catalyst possesses high content of pyridinic N (also including Fe-Nx), graphitic N atoms, thiophene S atoms, and abundant defects, as well as the high surface area and desirable mesoporous microstructure. Thus, in alkaline medium, the Fe-S,N-C shows an expected high ORR activity with a onset potential of 0.95 V and half-wave potential of 0.83 V. Meanwhile, the ORR proceeded on Fe-S,N-C via the four-electron transfer pathway. What is more, the as-prepared catalyst shows excellent electrocatalytic stability and good methanol tolerance, suggesting its potential applications in fuel cells and metal-air battery.

Graphical Abstract

A high-performance Fe/S/N tri-doped mesoporous carbon-based electrocatalyst with abundant defects and active sites has been successfully prepared by one easy way for ORR in alkaline medium.


Precious metal-free catalysts Oxygen reduction reaction Fe/S/N tri-doped carbon Alkaline medium 


Funding Information

This work was financially supported by the National Natural Science Foundation of China (No. 21506086, No. 21606033, No. 21606115, and No. 21776119), Postgraduate Research & Practice Innovation Program of Jiangsu Province, Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and Youth Science Foundation of Jiangsu (No. BK20140232).

Supplementary material

12678_2018_496_MOESM1_ESM.docx (4.7 mb)
ESM 1 (DOCX 4812 kb)


  1. 1.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Ignaczak, R. Nazmutdinov, A. Goduljan, L.M. de Campos Pinto, F. Juarez, P. Quaino, G. Belletti, E. Santos, W. Schmickler, Oxygen reduction in alkaline media—A discussion. Electrocatalysis 8(6), 554–564 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Liu, Y. Wang, L. Liu, M. Li, W. Lv, X. Zhao, Z. Qin, P. Zhu, G. Wang, Z. Long, F. Huang, One-pot synthesis of Pd@PtNi core-shell nanoflowers supported on the multi-walled carbon nanotubes with boosting activity toward oxygen reduction in alkaline electrolyte. J. Power Sources 365, 26–33 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.-J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak, B. Fang, D.P. Wilkinson, Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11(2), 258–275 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-j. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(5), 1808–1825 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Liu, Z. Yang, M. Li, L. Liu, Y. Wang, W. Lv, Z. Qin, X. Zhao, P. Zhu, G. Wang, FeS-decorated hierarchical porous N, S-dual-doped carbon derived from silica-ionogel as an efficient catalyst for oxygen reduction reaction in alkaline media. Electrochim. Acta 265, 221–231 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Liu, Z. Yang, L. Liu, M. Li, Y. Wang, W. Lv, X. Chen, X. Zhao, P. Zhao, G. Wang, Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 43(33), 16230–16239 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, Y. Chen, P. Zhao, W. Luo, S. Chen, M. Shao, Fe3C nanorods encapsulated in N-doped carbon nanotubes as active electrocatalysts for hydrogen evolution reaction. Electrocatalysis 9, 264–270 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.-M. Zhao, F.-F. Wang, P.-J. Wei, G.-Q. Yu, S.-C. Cui, J.-G. Liu, Cobalt and Iron oxides co-supported on carbon nanotubes as an efficient bifunctional catalyst for enhanced electrocatalytic activity in oxygen reduction and oxygen evolution reactions. ChemistrySelect 3, 12266–12272 (2018)Google Scholar
  10. 10.
    J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan, X. Ji, K. Xu, D. Zha, L. Miao, J. Jiang, Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J. Mater. Chem. A 6(5), 2067–2072 (2018)CrossRefGoogle Scholar
  11. 11.
    N. Khellaf, A. Kahoul, F. Naamoune, N. Alonso-Vante, Electrochemistry of nanocrystalline La0.5Sr0.5MnO3 perovskite for the oxygen reduction reaction in alkaline medium. Electrocatalysis 8(5), 450–458 (2017)CrossRefGoogle Scholar
  12. 12.
    S.S. Shinde, C.H. Lee, J.Y. Yu, D.H. Kim, S.U. Lee, J.H. Lee, Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 12(1), 596–608 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, L. Tao, Z. Xiao, R. Chen, Z. Jiang, S. Wang, 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Func. Mater. 28(11), 1705356 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1(7), e1500564 (2015)CrossRefGoogle Scholar
  15. 15.
    Q. Wei, Y. Fu, G. Zhang, S. Sun, Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries. Curr. Opin. Electrochem. 4(1), 45–59 (2017)CrossRefGoogle Scholar
  16. 16.
    A.C. Ramírez-Pérez, J. Quílez-Bermejo, J.M. Sieben, E. Morallón, D. Cazorla-Amorós, Effect of nitrogen-functional groups on the ORR activity of activated carbon fiber-polypyrrole-based electrodes. Electrocatalysis 9, 697–705 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Rafiee, B. Karimi, H. Shirmohammadi, Graphitized nitrogen-doped ordered mesoporous carbon derived from ionic liquid; catalytic performance toward ORR. Electrocatalysis 9(5), 632–639 (2018)CrossRefGoogle Scholar
  18. 18.
    C.L. McBean, H. Liu, M.E. Scofield, L. Li, L. Wang, A. Bernstein, S.S. Wong, Generalizable, electroless, template-assisted synthesis and electrocatalytic mechanistic understanding of perovskite LaNiO3 nanorods as viable, supportless oxygen evolution reaction catalysts in alkaline media. ACS Appl. Mater. Interfaces 9(29), 24634–24648 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Jasinski, A new fuel cell cathode catalyst. Nature 201(4925), 1212–1213 (1964)CrossRefGoogle Scholar
  20. 20.
    J.Y. Cheon, T. Kim, Y. Choi, H.Y. Jeong, M.G. Kim, Y.J. Sa, J. Kim, Z. Lee, T.H. Yang, K. Kwon, O. Terasaki, G.G. Park, R.R. Adzic, S.H. Joo, Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci. Rep. 3, 2715 (2013)CrossRefGoogle Scholar
  21. 21.
    S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: Pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ. Sci. 5(1), 5305–5314 (2012)CrossRefGoogle Scholar
  22. 22.
    H.W. Liang, W. Wei, Z.S. Wu, X. Feng, K. Mullen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135(43), 16002–16005 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015)CrossRefGoogle Scholar
  24. 24.
    J.K. Dombrovskis, A.E.C. Palmqvist, Recent progress in synthesis, characterization and evaluation of non-precious metal catalysts for the oxygen reduction reaction. Fuel Cells 16(1), 4–22 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Xiao, Z. Shao, G. Zhang, Y. Gao, W. Lu, B. Yi, Fe–N–carbon black for the oxygen reduction reaction in sulfuric acid. Carbon 57, 443–451 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Qian, P. Du, P. Wu, C. Cai, D.F. Gervasio, Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen-doped carbon-supported non-noble metal catalysts. J. Phy. Chem. C 120(18), 9884–9896 (2016)CrossRefGoogle Scholar
  27. 27.
    W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016)CrossRefGoogle Scholar
  28. 28.
    J.A. Varnell, E.C. Tse, C.E. Schulz, T.T. Fister, R.T. Haasch, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 7, 12582 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem. Int. Ed. Engl. 56(2), 610–614 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Liu, X. Chen, S. Wang, Z. Yang, J. Gao, P. Zhu, X. Zhao, G. Wang, 3D CNTs-threaded N-doped hierarchical porous carbon hybrid with embedded Co/CoO nanoparticles as efficient bifunctional catalysts for oxygen electrode reactions. Electrochim. Acta 292, 707–717 (2018)CrossRefGoogle Scholar
  31. 31.
    X. Qiao, J. Jin, H. Fan, Y. Li, S. Liao, In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. J. Mater. Chem. A5, 12354–12360 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Wang, Y. Qin, Y. Liu, F. Chu, Y. Kong, Y. Tao, Co,N,S-Codoped three-dimensional graphene as efficient bi-functional electrocatalyst for oxygen reduction/hydrogen evolution reaction. J. Electrochem. Soc. 164(12), F1110–F1114 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.C. Wang, Y.J. Lai, L. Song, Z.Y. Zhou, J.G. Liu, Q. Wang, X.D. Yang, C. Chen, W. Shi, Y.P. Zheng, M. Rauf, S.G. Sun, S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew Chem. Int. Ed. Engl. 54(34), 9907–9910 (2015)CrossRefGoogle Scholar
  34. 34.
    Z. Qiu, Y. Lin, H. Xin, P. Han, D. Li, B. Yang, P. Li, S. Ullah, H. Fan, C. Zhu, J. Xu, Ultrahigh level nitrogen/sulfur co-doped carbon as high performance anode materials for lithium-ion batteries. Carbon 126, 85–92 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Xiao, Y. Xia, C. Hu, J. Xi, S. Wang, Raisin bread-like iron sulfides/nitrogen and sulfur dual-doped mesoporous graphitic carbon spheres: A promising electrocatalyst for the oxygen reduction reaction in alkaline and acidic media. J. Mater. Chem. A 5(22), 11114–11123 (2017)CrossRefGoogle Scholar
  36. 36.
    H.-C. Huang, Y.-C. Lin, S.-T. Chang, C.-C. Liu, K.-C. Wang, H.-P. Jhong, J.-F. Lee, C.-H. Wang, Effect of a sulfur and nitrogen dual-doped Fe–N–S electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5(37), 19790–19799 (2017)CrossRefGoogle Scholar
  37. 37.
    S.-A. Wohlgemuth, F. Vilela, M.-M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem. 14(3), 741 (2012)CrossRefGoogle Scholar
  38. 38.
    C. Shu, Y. Chen, X.-D. Yang, Y. Liu, S. Chong, Y. Fang, Y. Liu, W.-H. Yang, Enhanced Fe dispersion via “pinning” effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode. J. Power Sources 376, 161–167 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Liu, H. Guo, Y. Hou, J. Wang, L. Fu, J. Chen, H. Liu, J. Wang, Y. Wu, A 3D hierarchical porous Co3O4 nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. J. Mater. Chem. A 5(28), 14673–14681 (2017)CrossRefGoogle Scholar
  40. 40.
    Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 13(22), 1604290 (2017)CrossRefGoogle Scholar
  41. 41.
    X. Zhang, G. Zhang, S. Wang, S. Li, S. Jiao, Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. J. Mater. Chem. A 6(7), 3084–3090 (2018)CrossRefGoogle Scholar
  42. 42.
    Q. Yu, C. Wu, J. Xu, Y. Zhao, J. Zhang, L. Guan, Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable catalysts for high power density Zn-air battery. Carbon 128, 46–53 (2018)CrossRefGoogle Scholar
  43. 43.
    J. Tang, J. Liu, C. Li, Y. Li, M.O. Tade, S. Dai, Y. Yamauchi, Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew Chem. Int. Ed. Engl. 54, 588–593 (2015)PubMedGoogle Scholar
  44. 44.
    W. Wang, J. Li, Y. Kang, F. Wang, J. Song, Z. Lei, Facile and scalable preparation of nitrogen, phosphorus codoped nanoporous carbon as oxygen reduction reaction electrocatalyst. Electrochim. Acta 248, 11–19 (2017)CrossRefGoogle Scholar
  45. 45.
    A. Arunchander, S.G. Peera, S.K. Panda, S. Chellammal, A.K. Sahu, Simultaneous co-doping of N and S by a facile in-situ polymerization of 6- N,N -dibutylamine-1,3,5-triazine-2,4-dithiol on graphene framework: An efficient and durable oxygen reduction catalyst in alkaline medium. Carbon 118, 531–544 (2017)CrossRefGoogle Scholar
  46. 46.
    W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du, Z. Fan, L. Xie, H. Zhang, W. Huang, T. Yu, Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. Adv. Mater. 26(35), 6186–6192 (2014)CrossRefGoogle Scholar
  47. 47.
    C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017)CrossRefGoogle Scholar
  48. 48.
    D. von Deak, E.J. Biddinger, U.S. Ozkan, Carbon corrosion characteristics of CNx nanostructures in acidic media and implications for ORR performance. J. Appl. Electrochem. 41(7), 757–763 (2011)CrossRefGoogle Scholar
  49. 49.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011)CrossRefGoogle Scholar
  50. 50.
    G. Zhang, P. Wang, W.T. Lu, C.Y. Wang, Y.K. Li, C. Ding, J. Gu, X.S. Zheng, F.F. Cao, Co nanoparticles/co, N, S tri-doped graphene templated from in-situ-formed co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 9(34), 28566–28576 (2017)CrossRefGoogle Scholar
  51. 51.
    G. He, M. Qiao, W. Li, Y. Lu, T. Zhao, R. Zou, B. Li, J.A. Darr, J. Hu, M.M. Titirici, I.P. Parkin, S, N-co-doped graphene-nickel cobalt sulfide aerogel: Improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 139(40), 14143–14149 (2017)CrossRefGoogle Scholar
  53. 53.
    Q. Wei, G. Zhang, X. Yang, R. Chenitz, D. Banham, L. Yang, S. Ye, S. Knights, S. Sun, 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media. ACS Appl. Mater. Interfaces 9(42), 36944–36954 (2017)CrossRefGoogle Scholar
  54. 54.
    X. Wan, R. Wu, J. Deng, Y. Nie, S. Chen, W. Ding, X. Huang, Z. Wei, A metal–organic framework derived 3D hierarchical co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. J. Mater. Chem. A 6(8), 3386–3390 (2018)CrossRefGoogle Scholar
  55. 55.
    J. Xu, G. Dong, C. Jin, M. Huang, L. Guan, Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. ChemSusChem 6(3), 493–499 (2013)CrossRefGoogle Scholar
  56. 56.
    Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-p. Wong, 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2(2), 241–248 (2013)CrossRefGoogle Scholar
  57. 57.
    C. Chen, Z. Zhou, Y. Wang, X. Zhang, X. Yang, X. Zhang, S. Sun, Fe, N, S-doped porous carbon as oxygen reduction reaction catalyst in acidic medium with high activity and durability synthesized using CaCl2 as template. Chin. J. Cataly. 38(4), 673–682 (2017)CrossRefGoogle Scholar
  58. 58.
    C. Domínguez, F.J. Pérez-Alonso, S.A. Al-Thabaiti, S.N. Basahel, A.Y. Obaid, A.O. Alyoubi, J.L. Gómez de la Fuente, S. Rojas, Effect of N and S co-doping of multiwalled carbon nanotubes for the oxygen reduction. Electrochim. Acta 157, 158–165 (2015)CrossRefGoogle Scholar
  59. 59.
    M. Sun, D. Davenport, H. Liu, J. Qu, M. Elimelech, J. Li, Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 6(6), 2527–2539 (2018)CrossRefGoogle Scholar
  60. 60.
    M. Sun, Y. Dong, G. Zhang, J. Qu, J. Li, α-Fe2O3 spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2(33), 13635–13640 (2014)CrossRefGoogle Scholar
  61. 61.
    W. Kiciński, B. Dembinska, M. Norek, B. Budner, M. Polański, P.J. Kulesza, S. Dyjak, Heterogeneous iron-containing carbon gels as catalysts for oxygen electroreduction: Multifunctional role of sulfur in the formation of efficient systems. Carbon 116, 655–669 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Liu, Z. Yang, M. Li, W. Lv, L. Liu, Y. Wang, X. Chen, X. Zhao, P. Zhu, G. Wang, Facile synthesis of 3D hierarchical mesoporous Fe-C-N catalysts as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 43(10), 5163–5174 (2018)CrossRefGoogle Scholar
  63. 63.
    Y. Zhang, L.-B. Huang, W.-J. Jiang, X. Zhang, Y.-Y. Chen, Z. Wei, L.-J. Wan, J.-S. Hu, Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(20), 7781–7787 (2016)CrossRefGoogle Scholar
  64. 64.
    X.-X. Ma, Y. Su, X.-Q. He, Fe9S10-decorated N, S co-doped graphene as a new and efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Catal. Sci. Technol. 7(5), 1181–1192 (2017)CrossRefGoogle Scholar
  65. 65.
    P. Zamani, D.C. Higgins, F.M. Hassan, X. Fu, J.-Y. Choi, M.A. Hoque, G. Jiang, Z. Chen, Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nano Energy 26, 267–275 (2016)CrossRefGoogle Scholar
  66. 66.
    K. Vezzù, A. Bach Delpeuch, E. Negro, S. Polizzi, G. Nawn, F. Bertasi, G. Pagot, K. Artyushkova, P. Atanassov, V. Di Noto, Fe-carbon nitride “core-shell” electrocatalysts for the oxygen reduction reaction. Electrochim. Acta 222, 1778–1791 (2016)CrossRefGoogle Scholar
  67. 67.
    N. Ramaswamy, S. Mukerjee, Influence of inner- and outer-sphere Electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phy. Chem. C 115(36), 18015–18026 (2011)CrossRefGoogle Scholar
  68. 68.
    Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015)CrossRefGoogle Scholar
  69. 69.
    Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energ. 88(4), 981–1007 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China
  2. 2.School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhouPeople’s Republic of China
  3. 3.School of Light Industry & Chemical EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China

Personalised recommendations