, Volume 10, Issue 1, pp 56–62 | Cite as

Low-Cost and Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: Environment-Friendly Three-Dimensional B, N Co-doped Graphene Aerogels

  • Jingrui Han
  • Yanlin Zhang
  • Fushuang Niu
  • Tao Chen
  • Jingquan LiuEmail author
  • Yuanhong XuEmail author
Original Research


Nitrogen (N) and boron (B) co-doped graphene materials have been certified as promising catalyst for oxygen reduction reaction (ORR), since the dual doping of foreign atoms could induce a unique electronic structure in graphene and create a synergistic coupling effect between heteroatoms. However, previously reported B, N co-doped graphene materials suffered from shortcomings such as needing highly toxic precursors or high cost or complex preparation procedures. Herein, one highly efficient metal-free ORR catalyst, three-dimensional graphene aerogels (GAs) co-doped with B and N using economical and environmentally friendly melamine and boric acid as heteroatom precursors, was prepared through a one-step hydrothermal method. The as-prepared microporous B, N co-doped GAs showed excellent electrochemical catalytic performances for ORR under alkaline condition (0.1 M KOH) with a much more positive onset potential (0.994 V vs. RHE) than most of the existing B, N co-doped ones, a dominant four-electron transfer mechanism (n = 3.73 at 0.6 V), as well as excellent stability.

Graphical Abstract


Oxygen reduction reaction B, N co-doped Graphene aerogels Three-dimensional porous structure 



This work was supported by the National Nature Science Foundation of China (No 21575071), Qingdao Innovation Leading Expert Program, Qingdao Basic & Applied Research Project (15-9-1-100-jch), Open Funds of the State Key Laboratory of Electroanalytical Chemistry (SKLEAC201601) and Science & Technology Fund Planning Project of Shandong Colleges and Universities (J16LA13), and Training Programme for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province (No. YQ2015203).

Supplementary material

12678_2018_494_MOESM1_ESM.doc (1.6 mb)
ESM 1 (DOC 1662 kb)


  1. 1.
    M.K. Debe, Nature 43, 486 (2012)Google Scholar
  2. 2.
    M. Zhou, HL. Wang, S.Guo, Chem. Soc. Rev. 1273, 45 (2016)Google Scholar
  3. 3.
    H. Woo, J. Kang, J. Kim, C. Kim, S. Nam, B. Park, Electron. Mater. Lett. 1, 12 (2016)Google Scholar
  4. 4.
    J. Suntivich, H. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 546, 3 (2011)Google Scholar
  5. 5.
    W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du, Z. Fan, L. Xie, H. Zhang, W. Huang, T. Yu, Adv. Mater. 6186, 26 (2014)Google Scholar
  6. 6.
    Q. Liu, Z. Pu, C. Tang, A. Asiri, A. Qusti, A. Al-Youbi, X. Sun, Electrochem. Commun. 57, 36 (2013)Google Scholar
  7. 7.
    Z.W. Liu, F. Peng, H.J. Wang, H. Yu, W.X. Zheng, J. Yang, Angew. Chem. Int. Ed. 3257, 50 (2011)Google Scholar
  8. 8.
    Z.S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am, Chem. Soc. 9082, 134 (2012)Google Scholar
  9. 9.
    W. Yang, X. Liu, X. Yue, J.Jia, S. Guo, J. Am. Chem. Soc.14, 137(2015)Google Scholar
  10. 10.
    Z. Pu, Q. Liu, C. Tang, A. Asiri, A. Qusti, A. Al-Youbi, X. Sun, J. Power Sources 257, 170 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 1399, 24 (2012)Google Scholar
  12. 12.
    S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. Int. Ed. 11770, 51 (2012)Google Scholar
  13. 13.
    W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 568, 8 (2015)Google Scholar
  14. 14.
    J. Tian, R. Ning, Q. Liu, A.M. Asiri, A. Al-Youbi, X. Sun, ACS Appl. Mater. Interfaces 1011, 6 (2014)Google Scholar
  15. 15.
    Y.K. Choi, K.H. Chjo, S.M. Park, J. Electrochem. Soc. 4107, 142 (1995)Google Scholar
  16. 16.
    Y. Shimizu, K. Uemura, N. Miura, N. Yamazoe, Chem. Lett. 1979, 12 (1988)Google Scholar
  17. 17.
    M.R. Gao, J. Jiang, S.H. Yu, Small 13, 8 (2012)Google Scholar
  18. 18.
    S. Ye, A.K. Vijh, Electrochem. Commun. 272, 5 (2003)Google Scholar
  19. 19.
    H. Ghanbarlou, S. Rowshanzamir, M.J. Parnian, F. Mehri, Int. J. Hydrog. Energy 14665, 41 (2016)Google Scholar
  20. 20.
    D. Higgins, F.M. Hassan, H.S. Min, J.Y. Choi, M.A. Hoque, U.L. Dong, Z. Chen, J. Mater. Chem. A6340, 3 (2015)Google Scholar
  21. 21.
    S. Rojas-Carbonell, S. Babanova, A. Serov, Y. Ulyanova, S. Singhal, P. Atanassov, Electrochim. Acta 504, 190 (2016)Google Scholar
  22. 22.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 760, 323 (2009)Google Scholar
  23. 23.
    L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 7270, 123 (2011)Google Scholar
  24. 24.
    K.N. Wood, R. O’Hayre, S. Pylypenko, Energy Environ. Sci. 1212, 7 (2014)Google Scholar
  25. 25.
    Y. Zhou, C.H. Yen, S. Fu, G. Yang, C. Zhu, D. Du, P.C. Wo, X. Chen, J. Yang, C.M. Wai, Green Chem. 3552, 17 (2015)Google Scholar
  26. 26.
    A. Ramadoss, S.J. Kim, Carbon 63, 434 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Shi, K. Chen, R. Du, A. Bachmatiuk, M. Rümmeli, K. Xie, Y. Huang, Y. Zhang, Z. Liu, J. Am. Chem. Soc. 6360, 138 (2016)Google Scholar
  28. 28.
    L. Chen, R. Du, J. Zhu, Y. Mao, C. Xue, N. Zhang, Y. Hou, J. Zhang, T. Yi, Small 1423, 11 (2015)Google Scholar
  29. 29.
    Z. Hou, Y. Jin, X. Xin, H. Tao, D. Wu, P. Xu, R. Liu, J. Colloid Interface Sci. 317, 488 (2016)Google Scholar
  30. 30.
    R. Liu, X. Xi, X. Xing, D. Wu, Rsc Advances 83613, 6 (2016)Google Scholar
  31. 31.
    L. Zhang, J. Niu, L. Dai, Z. Xia, Langmuir 7542, 28 (2012)Google Scholar
  32. 32.
    J. Liu, P. Song, Z. Ning, W. Xu, Electrocatalysis 132, 6 (2015)Google Scholar
  33. 33.
    R. Gokhale, Y. Chen, A. Serov, K. Artyushkova, P. Atanassov, Electrochem. Commun. 140, 72 (2016)Google Scholar
  34. 34.
    T. Huang, S. Mao, M. Qiu, O. Mao, C. Yuan, J. Chen, Electrochim. Acta 481, 222 (2016)Google Scholar
  35. 35.
    J. Zhu, C. He, Y. Li, S. Kang, P. Shen, J. Mater. Chem. A14700, 1 (2013)Google Scholar
  36. 36.
    Y. Liu, S. Chen, X. Quan, H. Yu, H. Zhao, Y. Zhang, G. Chen, J. Phys. Chem. C14992, 117 (2013)Google Scholar
  37. 37.
    Y. Zhang, X. Zhuang, Y. Su, F. Zhang, X. Feng, J. Mater. Chem. A7742, 2 (2014)Google Scholar
  38. 38.
    Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 12220, 15 (2013)Google Scholar
  39. 39.
    W.S.H. Jr, R.E. Offeman, J. Am, Chem. Soc. 1339, 80 (1958)Google Scholar
  40. 40.
    H.C. Chang, S.H. Park, S.I. Woo, Green Chem. 406, 13 (2010)Google Scholar
  41. 41.
    W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 1570, 53 (2014)Google Scholar
  42. 42.
    Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, Adv. Mater. 3777, 28 (2016)Google Scholar
  43. 43.
    Y. Liu, H. Feng, Y. Wu, L. Joshi, X. Zeng, J. Li, Biosens. Bioelectron. 63, 35 (2012)Google Scholar
  44. 44.
    X. Tu, S. Luo, G. Chen, J. Li, Chemistry 14359, 18 (2012)Google Scholar
  45. 45.
    S. Kabir, K. Artyushkova, A. Serov, P. Atanassov, ACS Appl. Mater. Interfaces 11623, 10 (2018)Google Scholar
  46. 46.
    Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin, S.Z. Qiao, Small 3550, 8 (2012)Google Scholar
  47. 47.
    L. Zhang, Z. Xia, J. Phys. Chem. C11170, 115 (2011)Google Scholar
  48. 48.
    E. Iyyamperumal, S. Wang, L. Dai, ACS Nano 5259, 6 (2012)Google Scholar
  49. 49.
    H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, ACS Nano 10837, 8 (2014)Google Scholar
  50. 50.
    L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 7132, 50 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life Sciences, College of Materials Science and Engineering, College Institute for Graphene Applied Technology InnovationQingdao UniversityQingdaoChina
  2. 2.Department of Environmental MonitoringGuangdong Polytechnic of Environmental Protection EngineeringFoshanChina

Personalised recommendations