Advertisement

Electrocatalysis

, Volume 10, Issue 1, pp 29–34 | Cite as

Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode

  • Yoshiyuki Takatsuji
  • Ikumi Nakata
  • Masayuki Morimoto
  • Tatsuya Sakakura
  • Ryota Yamasaki
  • Tetsuya HaruyamaEmail author
Original Research
  • 211 Downloads

Abstract

Among the electrode materials used for electrolytic CO2 reduction, only Cu shows a special function of producing not only carbon monoxide (CO), but also hydrocarbons from CO2. We found that, in electrolytic CO2 reduction using an electrolytically plated Cu-Co electrode, a hydrocarbon product with high faradaic efficiency (FE) could be obtained with low-FE CO. The plated electrodes have a Co solid solution on the Cu surface. The non-localized Co changes the adsorption energy of the reaction intermediate in CO2 reduction. Consequently, by increasing the Co content in Cu, HCOOH can be selectively produced. Further, in electrolytic CO2 reduction with an applied potential of − 1.19 V vs. reversible hydrogen electrode (RHE), the selectivity of methane (CH4) production improved, while the selectivity of ethylene (C2H4) formation lowered. In the reduction using the plated electrode containing 14% Co, the FE of CH4 production reached the highest at 47.7%. These results suggested that mixing Co in Cu promotes the hydrogenation of CH2* to CH3* and inhibits the dimerization of CH2* species. Furthermore, this research on plated electrodes is useful for the development of catalytic electrodes for electrolytic CO2 reduction.

Graphical Abstract

Electrolytic CO2 reduction using an electrolytically plated copper-cobalt electrode, a hydrocarbon product with high faradaic efficiency (FE), could be obtained.

Keywords

CO2 reduction Copper Cobalt Plated electrode Methane production selectivity 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science 329(5997), 1330–1333 (2010)CrossRefGoogle Scholar
  2. 2.
    Y.A. Daza, R.A. Kent, M.M. Yung, J.N. Kuhn, Carbon dioxide conversion by reverse water–gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 53(14), 5828–5837 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3(1), 43–81 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43(23), 8049–8080 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11-12), 1833–1839 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594(1), 1–19 (2006)CrossRefGoogle Scholar
  7. 7.
    K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012)CrossRefGoogle Scholar
  8. 8.
    K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136(40), 14107–14113 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto, I. Nakata, T. Sakakura, T. Haruyama, Electrodeposited Cu-Sn alloy for electrochemical CO2 reduction to CO/HCOO−. Electrocatalysis 9(3), 323–332 (2018)CrossRefGoogle Scholar
  10. 10.
    T.T.H. Hoang, S. Ma, J.I. Gold, P.J.A. Kenis, A.A. Gewirth, Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7(5), 3313–3321 (2017)CrossRefGoogle Scholar
  11. 11.
    H.S. Jeon, S. Kunze, F. Scholten, B. Roldan Cuenya, Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8(1), 531–535 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Rahaman, A. Dutta, A. Zanetti, P. Broekmann, Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7(11), 7946–7956 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Kim, S. Lee, J.D. Ocon, B. Jeong, J.K. Lee, J. Lee, Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 17(2), 824–830 (2015)CrossRefGoogle Scholar
  15. 15.
    S.A. Akhade, W. Luo, X. Nie, A. Asthagiri, M.J. Janik, Theoretical insight on reactivity trends in CO2 electroreduction across transition metals. Catal. Sci. Technol. 6(4), 1042–1053 (2016)CrossRefGoogle Scholar
  16. 16.
    H.-K. Lim, H. Shin, W.A. Goddard, Y.J. Hwang, B.K. Min, H. Kim, Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. J. Am. Chem. Soc. 136(32), 11355–11361 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Nie, W. Luo, M.J. Janik, A. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu(1 1 1) determined with density functional theory. J. Catal. 312, 108–122 (2014)CrossRefGoogle Scholar
  18. 18.
    A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem Lett. 3(2), 251–258 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Jia, X. Yu, L. Zhang, Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J. Power Sources 252, 85–89 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6(12), 8239–8247 (2016)CrossRefGoogle Scholar
  21. 21.
    J.-P. Grote, A.R. Zeradjanin, S. Cherevko, A. Savan, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Screening of material libraries for electrochemical CO2 reduction catalysts – Improving selectivity of Cu by mixing with Co. J. Catal. 343, 248–256 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Hirunsit, W. Soodsawang, J. Limtrakul, CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J. Phys. Chem. C 119(15), 8238–8249 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Functional Interface Engineering, Department of Biological Functions and EngineeringKyushu Institute of TechnologyKitakyushuJapan
  2. 2.Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C)Japan Science and Technology Agency (JST)TokyoJapan

Personalised recommendations