, Volume 10, Issue 1, pp 17–28 | Cite as

Ni-Mo Alloy Electrodeposited over Ni Substrate for HER on Water Electrolysis

  • Graciela AbuinEmail author
  • Roxana Coppola
  • Liliana Diaz
Original Research


Alkaline water electrolysis is a versatile technology for hydrogen production in situ. In this work, we study two different electrodeposited Ni-Mo alloys, with good electrocatalytic activity to hydrogen evolution reaction (HER). We propose Ni as substrate avoiding the corrosion and electrolyte contamination problem derived from eventual coating failure during long-term operations. The stable behavior of Ni as substrate as well as its known HER catalytic activity in alkaline electrolyzers make it attractive as a good option for our purpose. We prepare and characterize several Ni-Mo coatings over Ni by direct and pulse current supply electrodepositions. Ni-Mo coating prepared by pulse plating with a peak current density of 280 mA·cm−2 and 35% duty cycle exhibited the best electrocatalytic activity for HER. The coating is an amorphous alloy whose XRD peaks correspond to an f.c.c. Ni structure, with Mo substituent atoms and a rough cauliflower-like microstructure, with Mo content of 23 at.%. After 1000 cyclic voltammetry cycles, the electrocatalytic activity of the Ni-Mo electrocatalyst remains practically unchanged, and during 200 h of H2 evolution it maintains an overvoltage reduction of ca. 200 mV compared with bare Ni.

Graphical Abstract


Ni-Mo alloy Ni substrate Electrocatalyst Hydrogen evolution reaction Water electrolysis 



The authors wish to thank Dra. Paulina Lloret and BSc. Lionel Veiga from nanomaterials group (INTI-Procesos Superficiales) for SEM images, Laboratorio de Especies Cristalinas—DRX (INTI-Química), and Eng. Shaun T. Mc Mahon (INTI-Mecánica) for language revision.


  1. 1.
    M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production – a review. Renew. Sust. Energ. Rev. 29, 573–588 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Kraglund, D. Aili, K. Jankova, E. Christensen, Q. Li, J.O. Jensen, Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. J. Electrochem. Soc. 163(11), F3125–F3131 (2016)CrossRefGoogle Scholar
  3. 3.
    D. Pletcher, X. Li, Prospects for alkaline zero gap water electrolysers for hydrogen production. Int. J. Hydrog. Energy 36(23), 15089–15104 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions. A review. Int. J. Hydrog. Energy 40, 256 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Giz, S. Bento, E. Gonzalez, NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis. Int. J. Hydrog. Energy 25(7), 621–626 (2000)CrossRefGoogle Scholar
  6. 6.
    C. Hu, C. Tsay, A. Bai, Optimization of the hydrogen evolution activity on zinc/nickel deposits using experimental strategies. Electrochim. Acta 48(7), 907–918 (2003)CrossRefGoogle Scholar
  7. 7.
    R. Solmaz, G. Kardas, Hydrogen evolution and corrosion performance of NiZn coatings. Energy Convers. Manag. 48(2), 583–591 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Cai, J. Xu, J. Wanga, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, C. Cao, Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and, their excellent electrocatalytic activities for hydrogen evolution reaction. Int. J. Hydrog. Energy 38(2), 934–941 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Vázquez-Gómez, S. Cattarin, P. Guerriero, M. Musiani, Influence of deposition current density on the composition and properties of electrodeposited Ni + RuO2 and Ni + IrO2 composites. J. Electroanal. Chem. 634(1), 42–48 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Shibli, J. Sebeelamol, Development of Fe2O3 - TiO2 mixed oxide incorporated NiP coating for electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 38, 227 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Xu, J. Zhou, M. Zeng, X. Fu, X. Liu, J. Li, Electrodeposition mechanism and characterization of Ni-Mo alloy and its electrocatalytic performance for hydrogen evolution. Int. J. Hydrog. Energy 41(31), 13341–13349 (2016)CrossRefGoogle Scholar
  12. 12.
    I. McKay, J. Schwalbe, E. Goodman, J. Willis, A. Majumdar, M. Cargnello, Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction. MRS Commun. 6(03), 241–246 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Temam, H. Temam, S. Benramache, Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution. Chinese Phys. B 24(10), 108202–108201 (2015)CrossRefGoogle Scholar
  14. 14.
    O. Aaboubi, A.Y. Ali Omar, A. Franczak, K. Msellak, Investigation of the electrodeposition kinetics of Ni–Mo alloys in the presence of magnetic field. J. Electroanal. Chem. 737, 226–234 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Wang, Z. Wang, X. Yu, Z. Guo, Facile one-step electrodeposition preparation of porous Ni-Mo film as electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 40(5), 2173–2181 (2015)CrossRefGoogle Scholar
  16. 16.
    J.Y. Huot, M.L. Trudeau, R. Schulz, Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis. J. Electrochem. Soc. 138(5), 1316 (1991)CrossRefGoogle Scholar
  17. 17.
    P. Kedzierzawski, D. Oleszak, M. Janik-Czachor, Hydrogen evolution on hot and cold consolidated Ni–Mo alloys produced by mechanical alloying. Mater. Sci. Eng. A300, 105 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Schulz, J.Y. Huot, M.L. Trudeau, L. Dignard-Bailey, Z.H. Yan, S. Jin, A. Lamarre, E. Ghali, A. Van Neste, Nanocrystalline Ni-Mo alloys and their application in electrocatalysis. J. Mater. Res. 9(11), 2998–3008 (1994)CrossRefGoogle Scholar
  19. 19.
    E.K. Athanassiou, R.N. Grass, N. Osterwalder, W.J. Stark, Preparation of homogeneous, bulk nanocrystalline Ni/Mo alloys with tripled Vickers hardness using flame-made metal nanoparticles. Chem. Mater. 19(20), 4847–4854 (2007)CrossRefGoogle Scholar
  20. 20.
    G. Schiller, R. Henne, P. Mohr, P. Peinecke, High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer. Int. J. Hydrog. Energy 23(9), 761–765 (1998)CrossRefGoogle Scholar
  21. 21.
    L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J. Appl. Electrochem. 34(7), 735–749 (2004)CrossRefGoogle Scholar
  22. 22.
    M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen evolution reaction on smooth Ni (1-x) + Mo (x) alloys (0 ≤ x ≤ 0.25). J. Electroanal. Chem. 448, 87 (1998)CrossRefGoogle Scholar
  23. 23.
    L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 5, 7869 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Yu, M. Wang, Z. Wang, X. Gong, Z. Guo, Electrodeposited under super gravity field as electrocatalyst for hydrogen evolution reaction. J. Phys. Chem. C 121(31), 16792–16802 (2017)CrossRefGoogle Scholar
  25. 25.
    E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, Ni-Mo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179 (2005)CrossRefGoogle Scholar
  26. 26.
    Q. Han, S. Cui, N. Pu, J. Chen, K. Liu, X. Wei, A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium. Int. J. Hydrog. Energy 35(11), 5194–5201 (2010)CrossRefGoogle Scholar
  27. 27.
    W. Hu, Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrog. Energy 25(2), 111–118 (2000)CrossRefGoogle Scholar
  28. 28.
    J.O.’.M. Bockris, A. Damjanovic, R.J. Mannan, Catalysis of the electrodic hydrogen evolution and dissolution reactions on rationally chosen substrates. J. Electroanal. Chem. 18(4), 349–361 (1968)CrossRefGoogle Scholar
  29. 29.
    T. Watanabe, Nano Plating, Microstructure Control Theory of Plated Films and Data Base of Plated Film Microstructure, Elsevier, ISBN 0–08-0440193 (2004)Google Scholar
  30. 30.
    S. Nakahara, R. Weil, Initial stages of electro-mono-crystallization of nickel on copper-film substrates. J. Electrochem. Soc. 120(11), 1462 (1973)CrossRefGoogle Scholar
  31. 31.
    N. Krstajic, M. Popovic, B. Grgur, M. Vojnovic, D. Sepa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution, Part I. The mechanism. J. Electroanal. Chem. 512(1-2), 16–26 (2001)CrossRefGoogle Scholar
  32. 32.
    E.A. Franceschini, G.I. Lacconi, H.R. Corti, Kinetics of the hydrogen evolution on nickel in alkaline solution: new insight from rotating disk electrode and impedance spectroscopy analysis. Electrochim. Acta 159, 210–218 (2015)CrossRefGoogle Scholar
  33. 33.
    J.M. Jaksic, M.V. Vojnovic, N.V. Krstajic, Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim. Acta 45(25-26), 4151–4158 (2000)CrossRefGoogle Scholar
  34. 34.
    J. van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B.D. Gates, G. Jerkiewicz, Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts. ACS Appl. Mater. Interfaces 6, 12046 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Seghiouer, J. Chevalet, A. Barhoun, F. Lantelme, Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modeling. J. Electroanal. Chem. 442(1-2), 113–123 (1998)CrossRefGoogle Scholar
  36. 36.
    S.M. Abd El Haleem, B.G. Ateya, Cyclic voltammetry of copper in sodium hydroxide solutions. J. Electroanal. Chem. 117, 3019 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Nacional de Tecnología Industrial (INTI)-Procesos SuperficialesBuenos AiresArgentina

Personalised recommendations