Advertisement

Electrocatalysis

, Volume 9, Issue 6, pp 716–724 | Cite as

Electro-Fenton Degradation of Trimellitic and Pyromellitic Acids: Kinetics and Mechanism

  • Asma Sennaoui
  • Said Alahiane
  • Fatima Sakr
  • Brahim El Ibrahimi
  • Souad El Issami
  • El Habib Ait Addi
  • Ali Assabbane
Original Research
  • 65 Downloads

Abstract

This paper describes the application of electro-Fenton technology to decontaminate waters containing trimellitic and pyromellitic acids. In this technique, the electrogeneration of hydroxyl radicals (OH) leads to the oxidative degradation of the benzene polycarboxylic acids until their total mineralization. The effect of the operating parameters on the trimellitic acid removal was studied. Under the optimal conditions (C0 = 2.10−4 M, [Fe2+] = 0.3 mM, I = 300 mA, [Na2SO4] = 0.05 M, pH = 3), the mineralization of pyromellitic and trimellitic acid solutions was followed by chemical organic demand (COD) measurements after 4 and 5 h of electrolysis time, respectively. The highest disappearance rate of the pyromellitic acid is due to its greater reactivity compared to the trimellitic acid towards the hydroxyl radicals. The products resulting from degradation of pyromellitic acid were identified by using UPLC/MS. The identified by-products allowed proposing a degradation pathway for the pyromellitic and trimellic acids.

Graphical Abstract

Keywords

Degradation pathway Electro-Fenton Mineralization Pyromellitic acid Trimellitic acid 

References

  1. 1.
    A. Rezeg, S. Achour, Elimination d’acides organiques aromatiques par Coagulation-floculation au sulfate d’aluminium. Larhyss J. 4, 141–152 (2005)Google Scholar
  2. 2.
    J.M. Borah, S. Mahiuddin, Adsorption and surface complexation of trimesic acid at the a-alumina-electrolyte interface. J. Colloid Interface Sci. 322(1), 6–12 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    J.P. Cornard, A. Caudron, J.C. Merlin, UV–visible and synchronous fluorescence spectroscopic investigations of the complexation of Al (III) with caffeic acid, in aqueous low acidic medium. Polyhedron 25(11), 2215–2222 (2006)CrossRefGoogle Scholar
  4. 4.
    V. Gandhi, M. Mishra, P.A. Joshi, Titanium dioxide catalyzed photocatalytic degradation of carboxylic acids from waste water: a review. Mater. Sci. Forum 712, 175–189 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Laabd, A. El Jaouhari, M. Ait Haki, H. Eljazouli, M. Bazzaoui, H. Kabli, A. Albourine, Simultaneous removal of benzene polycarboxylic acids from water by polypyrrole composite filled with a cellulosic agricultural waste. J. Environ. Chem. Eng. 4(2), 1869–1879 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Röhrscheid, in Ullmann’s Encycl. Ind. Chem. Carboxylic acids, aromatic, vol 7 (1995), pp. 113–123Google Scholar
  7. 7.
    A. Luna, M.A. Valenzuela, C. Colbeau-Justin, P. Vázquez, J.L. Rodriguez, J.R. Avendano, S. Alfaro, S. Tirado, A. Garduno, J.M. De la Rosa, Photocatalytic degradation of gallic acid over CuO-TiO2 composites under UV/Vis LEDs irradiation. Appl. Catal. A Gen 521, 140–148 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Assabbane, Y. Ait Ichou, H. Tahiri, C. Guillard, J.M. Herrmann, Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal. B Environ. 24, 71–87 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Belmouden, Contribution à l'étude de l'adsorption de deux familles de polluants organiques (cas des acides benzenepolycarboxyliques et des herbicides phenoxyalcanoiques) sur plusieurs supports : charbons actifs et sols, Dessertation, Ibn Zohr University, 2000Google Scholar
  10. 10.
    M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. Crit. Rev. Environ. Sci. Technol. 44(23), 2577–2641 (2014)CrossRefGoogle Scholar
  11. 11.
    E. Brillas, M.A. Banos, J.A. Garrido, Mineralization of herbicide 3,6-dichloro-2- methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim. Acta 48(12), 1697–1705 (2003)CrossRefGoogle Scholar
  12. 12.
    E. Brillas, B. Boye, I. Sirés, J.A. Garrido, A.M. Rodriguez, C. Arias, P.L. Cabot, C. Comninellis, Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496 (2004)CrossRefGoogle Scholar
  13. 13.
    N. Oturan, C.T. Aravindakumar, H. Olvera-Vargas, M.M. Sunil Paul, M.A. Oturan, Electro-Fenton oxidation of para-aminosalicylic acid: degradation kinetics and mineralization pathway using Pt/carbon-felt and BDD/carbon-felt cells. Environ. Sci. Pollut. Res. 25(21), 20363–20373 (2018)CrossRefGoogle Scholar
  14. 14.
    E. Guirvach, S. Trevin, C. Lahitte, M.A. Oturan, Degradation of azo dyes in water by electro-Fenton process. Environ. Chem. Lett. 1, 38–44 (2003)CrossRefGoogle Scholar
  15. 15.
    E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109(12), 6570–6631 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    M.A. Oturan, N. Oturan, C. Lahite, S. Trévin, Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem. 507, 96–102 (2001)CrossRefGoogle Scholar
  17. 17.
    I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: Today and tomorrow. Environ. Sci. Pollut. R. 21(14), 8336–8367 (2014)CrossRefGoogle Scholar
  18. 18.
    E. Guinea, C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodriguez, F. Centellas, E. Brillas, Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res. 42(1-2), 499–511 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    M. Hamza, R. Abdelhedi, E. Brillas, I. Sirés, Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes. Electroanal. Chem. 627(1-2), 41–50 (2009)CrossRefGoogle Scholar
  20. 20.
    P.A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti, C. Gomninellis, Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J. Appl. Electrochem. 33(2), 151–154 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Panizza, G. Cerisola, Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind. Eng. Chem. Res. 47(18), 6816–6820 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Chafai, Synthèse du polypyrrole et de la polyaniline et leur application à l’élimination de certains polluants par adsorption, Dessertation, Ibn Zohr University, 2013Google Scholar
  23. 23.
    B. Boye, M.M. Dieng, E. Brillas, Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 36(13), 3030–3035 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Diagne, N. Oturan, M.A. Oturan, Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66(5), 841–848 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    Smew, Standard methods for the examination of water and wastewater, 20th edn. (APHA, Awwa, WPCF, 2002)Google Scholar
  26. 26.
    I. Sirés, J.A. Garrido, R.M. Rodriguez, E. Brillas, N. Oturan, M.A. Oturan, Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B Environ. 72(3-4), 382–394 (2007)CrossRefGoogle Scholar
  27. 27.
    E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98(1-3), 33–50 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
    S. Trabelsi, N. Oturan, N. Bellakhal, M.A. Oturan, Electrochemical oxidation of phthalic anhydride in aqueous medium by électro-Fenton process. J. Environ. Eng. Manag. 19, 291–297 (2009)Google Scholar
  29. 29.
    A. Özcan, Y. Sahin, A. Savas Koparal, M.A. Oturan, Degradation of picloram by the electro-Fenton process. J. Hazard. Mater. 153(1-2), 718–727 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    F. Hachami, R. Salghi, M. Mihit, L. Bazzi, K. Serrano, A. Hormatallah, M.E. Hilali, Ectrochemical destruction of methidathion by anodic oxidation using a boro-doped diamond electrode. Int. Sci. J. Altern. Energy Ecol. 62, 35–40 (2008)Google Scholar
  31. 31.
    A. Dirany, I. Sirés, N. Oturan, A. Özcan, M.A. Oturan, Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ. Sci. Technol. 46(7), 4074–4082 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    M.J. Frich, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03 Revision B.01 (Gaussian, Inc., Pittsburgh, 2003)Google Scholar
  33. 33.
    S. El Issami, Etude de l’inhibition de la corrosion du cuivre en milieu acide chlorhydrique par des composés organiques de type « Triazole » et « Tétrazole » : Approches expérimentales et théoriques, Dessertation, Ibn Zohr University, 2006Google Scholar
  34. 34.
    F. Lebreux, F. Buzzo, I.E. Markó, Synthesis of five- and six-membered-ring compounds by environmentally friendly radical cyclizations using Kolbe electrolysis. Synlett 18, 2815–2820 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Asma Sennaoui
    • 1
  • Said Alahiane
    • 1
  • Fatima Sakr
    • 1
  • Brahim El Ibrahimi
    • 2
  • Souad El Issami
    • 2
  • El Habib Ait Addi
    • 3
  • Ali Assabbane
    • 1
  1. 1.Laboratory of Electrochemistry Catalysis and Environment, Catalysis and Environment Team, Faculty of ScienceIbn Zohr UniversityAgadirMorocco
  2. 2.Apply Chemistry-Physic Team, Faculty of ScienceIbn Zohr UniversityAgadirMorocco
  3. 3.Biotechnology Energy and Environment Team, Superior School of TechnologyIbn Zohr UniversityAgadirMorocco

Personalised recommendations