Advertisement

Electrocatalysis

, Volume 9, Issue 6, pp 697–705 | Cite as

Effect of Nitrogen-Functional Groups on the ORR Activity of Activated Carbon Fiber-Polypyrrole-Based Electrodes

  • Ana Cristina Ramírez-Pérez
  • Javier Quílez-Bermejo
  • Juan Manuel Sieben
  • Emilia Morallón
  • Diego Cazorla-Amorós
Original Research

Abstract

Polypyrrole (PPy) coatings inside the microporosity of an activated carbon fiber (ACF) were synthesized by chemical polymerization obtaining ACF-PPy composites. N-doped ACFs were prepared by carbonization of the ACF-PPy composites at two temperatures (500 and 800 °C). All the samples were characterized using different techniques (XPS, SEM, elemental analysis, physical adsorption of N2, cyclic voltammetry, etc.). The electrochemical characterization in alkaline medium shows that the N-doped ACFs have a similar specific capacitance than the pristine ACF, in spite of the lower specific surface area. The materials were used as electrodes in the oxygen reduction reaction (ORR) in alkaline medium using the rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) tests. It was found that the N-doped ACF material carbonized at 800 °C has higher catalytic activity than the pristine ACF. The investigation also indicates that the ORR process on the N-doped ACF materials proceeds through an indirect two-electron pathway.

Graphical Abstract

Keywords

Activated carbon fiber Polypyrrole Thermal treatment Oxygen reduction reaction Electrocatalysts 

Notes

Funding Information

The authors thank MINECO, GV, and FEDER for financial support (projects MAT2016-76595-R, CTQ2015-66080-R (MINECO/FEDER)). ACRP thanks GV for a Santiago Grisolía fellowship (GRISOLIA/2012/009).

Supplementary material

12678_2018_478_MOESM1_ESM.docx (362 kb)
ESM 1 (DOCX 362 kb)

References

  1. 1.
    W. Vielstich, A. Lamm, H.A. Gasteiger, H. Yokokawa, Handbook of fuel cells: fundamentals, technology, and applications (Wiley, 2003)Google Scholar
  2. 2.
    Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    M. Klingele, C. Van Pham, A. Fischer, S. Thiele, Fuel. Cells 16, 522 (2016)Google Scholar
  4. 4.
    M.A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 160, 1759 (2013)CrossRefGoogle Scholar
  5. 5.
    P. Kichambare, S. Rodrigues, J. Kumar, Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium–oxygen batteries. ACS Appl. Mater. Interfaces 4(1), 49–52 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Sarapuu, E. Kibena-Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A 6(3), 776–804 (2018)CrossRefGoogle Scholar
  8. 8.
    D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Asghar, A.A. Abdul Raman, W.M.A.W. Daud, Recent advances, challenges and prospects of in situ production of hydrogen peroxide for textile wastewater treatment in microbial fuel cells. J. Chem. Technol. Biotechnol. 89(10), 1466–1480 (2014)CrossRefGoogle Scholar
  10. 10.
    F.V.E. Dos Reis, V.S. Antonin, P. Hammer, M.C. Santos, P.H.C. Camargo, Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J. Catal. 326, 100–106 (2015)CrossRefGoogle Scholar
  11. 11.
    M. A. O’Connell, J. R. Lewis, and A. J. Wain, Chem. Commun. 51, 10314 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    J.T. Jasper, Z.L. Jones, J.O. Sharp, D.L. Sedlak, Biotransformation of trace organic contaminants in open-water unit process treatment wetlands. Environ. Sci. Technol. 48(9), 5136–5144 (2014)CrossRefPubMedGoogle Scholar
  13. 13.
    K. Tammeveski, K. Kontturi, R.J. Nichols, R.J. Potter, D.J. Schiffrin, Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 515(1-2), 101–112 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Sarapuu, K. Vaik, D.J. Schiffrin, K. Tammaveski, Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 541, 23–29 (2003)CrossRefGoogle Scholar
  15. 15.
    A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006)CrossRefGoogle Scholar
  16. 16.
    R. J. Brodd, in Carbons Electrochem Energy Storage Convers Syst, edited by F. Béguin and E. Frackowiak (CRC Press, 2009), pp. 411–468Google Scholar
  17. 17.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)CrossRefPubMedGoogle Scholar
  18. 18.
    J. Quílez-Bermejo, C. González-Gaitán, E. Morallón, D. Cazorla-Amorós, Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites. Carbon 119, 62–71 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Maldonado, K.J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109(10), 4707–4716 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge, W.-J. Yuan, Y.-H. Shen, A.-J. Xie, S.-H. Yu. Energy Environ. Sci. 7(12), 4095–4103 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Shiraishi, Heat-treatment and nitrogen-doping of activated carbons for high voltage operation of electric double layer capacitor. Key Eng. Mater. 497, 80–86 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11), 1475–1488 (2008)CrossRefGoogle Scholar
  23. 23.
    W. Shen, W. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999–1013 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73, 361–370 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Ratso, I. Kruusenberg, U. Joost, R. Saar, K. Tammeveski, Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int. J. Hydrog. Energy 41(47), 22510–22519 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, R. Saar, M. Pärs, J. Leis, K. Tammeveski, Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 113, 159–169 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv. 5(73), 59495–59505 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, K. Tammeveski, Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochim. Acta 87, 709–716 (2013)CrossRefGoogle Scholar
  29. 29.
    M.A. Chougule, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 1(01), 6–10 (2011)CrossRefGoogle Scholar
  30. 30.
    L.-X. Wang, X.-G. Li, Y.-L. Yang, Preparation, properties and applications of polypyrroles. React. Funct. Polym. 47(2), 125–139 (2001)CrossRefGoogle Scholar
  31. 31.
    M. Mooste, E. Kibena-Põldsepp, L. Matisen, M. Merisalu, M. Kook, V. Kisand, V. Vassiljeva, A. Krumme, V. Sammelselg, K. Tammeveski, Catal. Lett. (2018).  https://doi.org/10.1007/s10562-018-2392-6 CrossRefGoogle Scholar
  32. 32.
    J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Chem. Commun. 54, 4441 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Borghei, P. Kanninen, M. Lundahl, T. Susi, J. Sainio, I. Anoshkin, A. Nasibulin, T. Kallio, K. Tammeveski, E. Kauppinen, V. Ruiz, Appl. Catal. B Environ. 158–159, 233 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Gabe, J. García-Aguilar, Á. Berenguer-Murcia, E. Morallón, D. Cazorla-Amorós, Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Appl. Catal. B Environ. 217, 303–312 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, D. Cazorla-Amorós, E. Morallón, Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochim. Acta 89, 326–333 (2013)CrossRefGoogle Scholar
  36. 36.
    D. Cazorla-Amorós, J. Alcañiz-Monge, M.A. de la Casa-Lillo, A. Linares-Solano, CO2As an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16), 4589–4596 (1998)CrossRefGoogle Scholar
  37. 37.
    F. Stoeckli, L. Ballerini, Evolution of microporosity during activation of carbon. Fuel 70(4), 557–559 (1991)CrossRefGoogle Scholar
  38. 38.
    D. Cazorla-Amorós, J. Alcaniz-Monge, Á. Linares-Solano, Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820–2824 (1996)CrossRefGoogle Scholar
  39. 39.
    F. Zaragoza-Martín, D. Sopeña-Escario, E. Morallón, C.S.-M. de Lecea, Pt/carbon nanofibers electrocatalysts for fuel cells. J. Power Sources 171(2), 302–309 (2007)CrossRefGoogle Scholar
  40. 40.
    A. J. Bard and L. R. Faulkner, Electrochemical methods. Fundamentals and applications, 2nd ed. (New York, 2001)Google Scholar
  41. 41.
    R.E. Davis, G.L. Horvath, C.W. Tobias, The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim. Acta 12(3), 287–297 (1967)CrossRefGoogle Scholar
  42. 42.
    D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, E. Morallón, M. Burghammer, C. Riekel, D. Cazorla-Amorós, Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. Carbon 50(3), 1051–1056 (2012)CrossRefGoogle Scholar
  43. 43.
    C. Malitesta, I. Losito, L. Sabbatini, P.G. Zambonin, New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J. Electron Spectros. Relat. Phenomena 76, 629–634 (1995)CrossRefGoogle Scholar
  44. 44.
    A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 48(38), 4627–4629 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Yuasa, A. Yamaguchi, H. Itsuki, K. Tanaka, Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem. Mater. 17(17), 4278–4281 (2005)CrossRefGoogle Scholar
  46. 46.
    E. Raymundo-Piñero, D. Cazorla-Amorós, Á. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41(10), 1925–1932 (2003)CrossRefGoogle Scholar
  47. 47.
    E. Raymundo-Piñero, D. Cazorla-Amorós, Á. Linares-Solano, J. Find, U. Wild, R. Schlogl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40(4), 597–608 (2002)CrossRefGoogle Scholar
  48. 48.
    Z. Rozlívková, M. Trchová, M. Exnerová, J. Stejskal, The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth. Met. 161(11-12), 1122–1129 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Kuroki, Y. Hosaka, C. Yamauchi, A solid-state NMR study of the carbonization of polyaniline. Carbon 55, 160–167 (2013)CrossRefGoogle Scholar
  50. 50.
    M.J. Bleda-Martínez, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, Á. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials. Carbon 44(13), 2642–2651 (2006)CrossRefGoogle Scholar
  51. 51.
    C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction. Int. J. Hydrog. Energy 40(34), 11242–11253 (2015)CrossRefGoogle Scholar
  52. 52.
    A. Dobrzeniecka, A.R. Zeradjanin, J. Masa, M. Blicharska, D. Wintrich, P.J. Kulesza, W. Schuhmann, Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction—a comparative study between SECM and hydrodynamic methods. Catal. Today 262, 74–81 (2016)CrossRefGoogle Scholar
  53. 53.
    J. Wu, D. Zhang, H. Niwa, Y. Harada, M. Oshima, H. Ofuchi, Y. Nabae, T. Okajima, T. Ohsaka, Enhancement in kinetics of the oxygen reduction reaction on a nitrogen-doped carbon catalyst by introduction of iron via electrochemical methods. Langmuir 31(19), 5529–5536 (2015)CrossRefPubMedGoogle Scholar
  54. 54.
    T. Sharifi, G. Hu, X. Jia, T. Wågberg, Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6(10), 8904–8912 (2012)CrossRefPubMedGoogle Scholar
  55. 55.
    M. Bayati, K. Scott, Synthesis and activity of a single active site n-doped electro-catalyst for oxygen reduction. Electrochim. Acta 213, 927–932 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Park, T. Lee, B.-S. Kim, Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale 5(24), 12255–12260 (2013)CrossRefPubMedGoogle Scholar
  57. 57.
    M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink, K. Tammeveski, Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Appl. Catal. B Environ. 147, 369–376 (2014)CrossRefGoogle Scholar
  58. 58.
    N. Alexeyeva, K. Tammeveski, Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media. Electrochem. Solid-State Lett. 10(5), F18 (2007)CrossRefGoogle Scholar
  59. 59.
    R. A. Sidik, A. B. Anderson, Nalini P. Subramanian, A. Swaminatha P. Kumaraguru, SP and B. N. Popov, (2006)Google Scholar
  60. 60.
    Y. Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Appl. Surf. Sci. 256(1), 335–341 (2009)CrossRefGoogle Scholar
  61. 61.
    B.W. Noffke, Q. Li, K. Raghavachari, L. Li, A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J. Am. Chem. Soc. 138(42), 13923–13929 (2016)CrossRefGoogle Scholar
  62. 62.
    E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29(11), 1527–1537 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química Física and Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento de Química Inorgánica and Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain
  3. 3.Instituto de Ingeniería Electroquímica y Corrosión and CONICETUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations