Advertisement

Electrocatalysis

, Volume 9, Issue 6, pp 653–661 | Cite as

Co3O4 Nanosheet Arrays on Ni Foam as Electrocatalyst for Oxygen Evolution Reaction

  • Youyi Yu
  • Jiali Zhang
  • Min Zhong
  • Shouwu Guo
Original Research
  • 562 Downloads

Abstract

Co3O4 nanosheet arrays on Ni foam (Co3O4 NS/NF) were designed, fabricated, and utilized as electrocatalysts for electrochemical oxygen evolution reaction (OER). The electrocatalytic performance of the Co3O4 NS/NF for OER was systematically evaluated by cyclic voltammetry, linear polarization, and Tafel curve measurements. Compared to the bare Ni foam, free-standing Co3O4 nanosheets, and commercialized Pt/C electrodes, Co3O4 NS/NF exhibits excellent OER activity in water-alkaline electrolyte with low onset overpotential (~ 50 mV), large anodic current density, and excellent durability. The compatible electrocatalytic activity for OER of the Co3O4 NS/NF is attributed to the unique nanosheet structure and the interconnected nanoarrays configuration of Co3O4 that provides plentiful catalytic active sites, in addition to the inherent catalytic activity of Co3O4. The electron transportation capability of the supporter Ni foam makes the composite a potential electrocatalyst for OER.

Graphical Abstract

Co3O4 nanosheet arrays on Ni foam (Co3O4 NS/NF) was designed, fabricated, and utilized as electrocatalyst for the electrochemical oxygen evolution reaction (OER).

Keywords

Co3O4 nanoarrays Ni foam Oxygen evolution reaction Electrocatalysis 

Notes

Funding information

The work was financially supported by the National “973 Program” of China (2015CB931801) and the National Science foundation of China (No. 11374205).

Supplementary material

12678_2018_473_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1792 kb)

References

  1. 1.
    X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. Int. Ed. 51, 13089 (2012)CrossRefGoogle Scholar
  2. 2.
    M.W. Kanan, D.G. Nocera, Science 321(80), 1072 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    W. Hu, Y. Wang, X. Hu, Y. Zhou, S. Chen, J. Mater. Chem. 22, 6010 (2012)CrossRefGoogle Scholar
  4. 4.
    J.B. Gerken, J.G. McAlpin, J.Y.C. Chen, M.L. Rigsby, W.H. Casey, R.D. Britt, S.S. Stahl, J. Am. Chem. Soc. 133, 14431 (2011)CrossRefPubMedGoogle Scholar
  5. 5.
    F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48, 1841 (2009)CrossRefGoogle Scholar
  6. 6.
    A.J. Esswein, M.J. Mcmurdo, P.N. Ross, A.T. Bell, T.D. Tilley, J. Phys. Chem. C 113, 15068 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Han, P. Du, J. Energy Chem. 23, 179 (2014)CrossRefGoogle Scholar
  8. 8.
    A.J. Bloomfield, S.W. Sheehan, S.L. Collom, P.T. Anastas, ACS Sustain. Chem. Eng. 3, 1234 (2015)CrossRefGoogle Scholar
  9. 9.
    N.H. Chou, P.N. Ross, A.T. Bell, T.D. Tilley, ChemSusChem 4, 1566 (2011)CrossRefPubMedGoogle Scholar
  10. 10.
    X. Deng, H. Tüysüz, ACS Catal. 4, 3701 (2014)CrossRefGoogle Scholar
  11. 11.
    V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. Int. Ed. 50, 7238 (2011)CrossRefGoogle Scholar
  12. 12.
    I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. Rossmeisl, ChemCatChem 3, 1159 (2011)CrossRefGoogle Scholar
  13. 13.
    J.A. Koza, Z. He, A.S. Miller, J.A. Switzer, Chem. Mater. 24, 3567 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri, P. Yang, Nano Res. 6, 47 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Li, P. Hasin, Y. Wu, Adv. Mater. 22, 1926 (2010)CrossRefPubMedGoogle Scholar
  16. 16.
    B. Lu, D. Cao, P. Wang, G. Wang, Y. Gao, Int. J. Hydrog. Energy 36, 72 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Zou, J. Su, R. Silva, A. Goswami, B.R. Sathe, T. Asefa, Chem. Commun. 49, 7522 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10, 780 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    B.S. Yeo, A.T. Bell, J. Am. Chem. Soc. 133, 5587 (2011)CrossRefPubMedGoogle Scholar
  20. 20.
    B.H.R. Suryanto, X.Y. Lu, C. Zhao, J. Mater. Chem. A 1, 12726 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Nano Res. 5, 521 (2012)CrossRefGoogle Scholar
  22. 22.
    X.Y. Lu, C. Zhao, J. Mater. Chem. A 1, 12053 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Adv. Mater. 28, 77 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    S. Chen, J. Duan, P. Bian, Y. Tang, R. Zheng, S.Z. Qiao, Adv. Energy Mater. 5, 1 (2015)Google Scholar
  25. 25.
    Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun. 50, 6479 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Liu, X. Wang, X. Yuan, W. Dong, F. Huang, J. Mater. Chem. A 4, 167 (2016)CrossRefGoogle Scholar
  27. 27.
    R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12, 2559 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, R.A. Fischer, W. Schuhmann, M. Muhler, ChemElectroChem 1, (2016)Google Scholar
  29. 29.
    Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, J. Power Sources 195, 1757 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.J. Fan, Energy Environ. Sci. 4, 4496 (2011)CrossRefGoogle Scholar
  31. 31.
    L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Götz, A. Mishra, P. Bäuerle, R. Amal, G.G. Wallace, A.J. Mozer, Energy Environ. Sci. 5, 9472 (2012)CrossRefGoogle Scholar
  32. 32.
    Y.-C. Liu, J.A. Koza, J.A. Switzer, Electrochim. Acta 140, 359 (2014)CrossRefGoogle Scholar
  33. 33.
    J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, ACS Catal. 2, 1916 (2012)CrossRefGoogle Scholar
  34. 34.
    X. Li, G.L. Xu, F. Fu, Z. Lin, Q. Wang, L. Huang, J.T. Li, S.G. Sun, Electrochim. Acta 96, 134 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Binitha, A.G. Ashish, D. Ramasubramonian, P. Manikandan, M.M. Shaijumon, Adv. Mater. Interfaces 3, 1 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Li, H. Cao, J. Shao, G. Li, M. Qu, G. Yin, Inorg. Chem. 50, 1628 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    M. Ledendecker, G. Clavel, M. Antonietti, M. Shalom, Adv. Funct. Mater. 25, 393 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Palmas, F. Ferrara, A. Vacca, M. Mascia, A.M. Polcaro, Electrochim. Acta 53, 400 (2007)CrossRefGoogle Scholar
  39. 39.
    M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135, 12329 (2013)CrossRefPubMedGoogle Scholar
  40. 40.
    S.K. Singh, V.M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 7, 442 (2015)CrossRefPubMedGoogle Scholar
  41. 41.
    X. Yang, H. Li, A.Y. Lu, S. Min, Z. Idriss, M.N. Hedhili, K.W. Huang, H. Idriss, L.J. Li, Nano Energy 25, 42 (2016)CrossRefGoogle Scholar
  42. 42.
    H.S. Ahn, T.D. Tilley, Adv. Funct. Mater. 23, 227 (2013)CrossRefGoogle Scholar
  43. 43.
    B. Chi, H. Lin, J. Li, Int. J. Hydrog. Energy 33, 4763 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Funct. Mater. 22, 4592 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Kundu, L. Liu, J. Power Sources 243, 676 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Grdeń, M. Alsabet, G. Jerkiewicz, ACS Appl. Mater. Interfaces 4, 3012 (2012)CrossRefPubMedGoogle Scholar
  47. 47.
    A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26, 4661 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24, 934 (2014)CrossRefGoogle Scholar
  49. 49.
    D. Li, X. Liu, Q. Zhang, Y. Wang, H. Wan, Catal. Lett. 127, 377 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Younis, D. Chu, X. Lin, J. Lee, S. Li, Nanoscale Res. Lett. 8, 36 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 54, 9351 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Favaro, J. Yang, S. Nappini, E. Magnano, F.M. Toma, E.J. Crumlin, J. Yano, I.D. Sharp, J. Am. Chem. Soc. 139, 8960 (2017)CrossRefPubMedGoogle Scholar
  53. 53.
    J. Yang, J.K. Cooper, F.M. Toma, K.A. Walczak, M. Favaro, J.W. Beeman, L.H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, I.D. Sharp, Nat. Mater. 16, 335 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations