Electrocatalysis

, Volume 9, Issue 3, pp 279–286 | Cite as

Silver/Nickel Oxide (Ag/NiO) Nanocomposites Produced Via a Citrate Sol-Gel Route as Electrocatalyst for the Oxygen Evolution Reaction (OER) in Alkaline Medium

Original Research
  • 108 Downloads

Abstract

A series of Ag/NiO nanocomposite electrocatalysts, with a general molecular formula of Ag x Ni1 − xO, was synthesised employing the citrate sol-gel route and tested for the oxygen evolution reaction (OER) in 0.1 M KOH solution. Crystal structure, morphology and stoichiometry of the catalysts were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The face-centred cubic (fcc) crystalline structure of NiO was revealed as being dominant, having an average crystallite size of 9.6 nm. SEM revealed a non-uniform, cotton-like surface for NiO showing aggregation of particles. Crystallinity of the different synthesised compounds decreased as the Ag content increased. The maximum OER activity was observed for pristine NiO, without any Ag additive, requiring an overpotential of only 263 mV to obtain a current density of 10 mA cm−2 at 25 °C. The addition of Ag inhibited the OER electrocatalytic activity, which might be due to Ag oxidation being observed at 1.431 V.

Graphical Abstract

Keywords

Ag/NiO nanocomposite Oxygen evolution reaction Electrocatalyst Citrate sol-gel route 

Notes

Acknowledgements

Our thanks and appreciation is extended to Mr. Adam Schnier and Prof. Dave Billing of the Department of Chemistry at the Witwatersrand University for conducting the XRD analysis.

References

  1. 1.
    V. Maruthapandian, T. Pandiarajan, V. Saraswathy, S. Muralidharan, RSC Adv. 6, 48995–49002 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Yang, H. Fei, G. Ruan, L. Li, G. Wang, N.D. Kim, J.M. Tour, ACS Appl. Mater. Interfaces 7, 20607–20611 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Cheng, S.P. Jiang, Progress in Natural Science: Materials International 25, 545–553 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, J. Am. Chem. Soc. 136, 11452–11464 (2014)CrossRefGoogle Scholar
  5. 5.
    R.B. Moghaddam, C. Wang, J.B. Sorge, M.J. Brett, S.H. Bergens, Electrochem. Commun. 60, 109–112 (2015)CrossRefGoogle Scholar
  6. 6.
    J.A. Bau, E.J. Luber, J.M. Buriak, ACS Appl. Mater. Interfaces 7, 19755–19763 (2015)CrossRefGoogle Scholar
  7. 7.
    R.G. Gonzalez-Huerta, G. Ramos-Sanchez, P.B. Balbuena, J. Power Sources 268, 69–76 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Song, T. Yang, H. Du, W. Dong, Z. Liang, J. Electroanal. Chem. 760, 59–63 (2016)CrossRefGoogle Scholar
  9. 9.
    D.J. Davis, T.N. Lambert, J.A. Vigil, M.A. Rodriguez, M.T. Brumbach, E.N. Coker, S.J. Limmer, J. Phys. Chem. C 118, 17342–17350 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Li, H. Yu, X. Wang, S. Sun, Y. Li, Z. Shao, B. Yi, Phys. Chem. Chem. Phys. 15, 2858–2866 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Liu, J. Xu, Y. Wang, X. Wang, J. Mater. Chem. A 3, 20791–20800 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Trotochaud, S.W. Boettcher, Scr. Mater. 74, 25–32 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Sardar, S.C. Ball, J.D.B. Sharman, D. Thompsett, J.M. Fisher, R.A.P. Smith, P.K. Biswas, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Mater. 24, 4192–4200 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, ACS Nano 8, 9518–9523 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Ramon, G. Mascaros, Chem. Electro. Chem 2, 37–50 (2015)Google Scholar
  16. 16.
    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977–16987 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Doblinger, A. Muller, A. Pokharel, S. Bocklein, C. Scheu, T. Bein, D. Fattakhova-Rohlfing, ACS Nano 9, 5180–5188 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Beg, S. Hafeez, N.A.S. Al-Areqi, Solid State Ionics 261, 125–130 (2014)CrossRefGoogle Scholar
  19. 19.
    A.S. Danial, M.M. Saleh, S.A. Salih, M.I. Awad, J. Power Sources 293, 101–108 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Liang, Y.-Z. Wang, C.-C. Wang, S.-Y. Lu, J. Mater. Chem. A 4, 9797–9806 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Shahriary, A.A. Athawale, J. Solid State Electrochem. 19, 2255–2263 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, Y. Wang, L. Su, H. Zhang, Y. Lei, J. Mater. Chem. 20, 9918–9926 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Audichon, W.T. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, J. Phys. Chem. C 120, 2562–2573 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Audichon, B. Guenot, S. Baranton, M. Cretin, C. Lamy, C. Coutanceau, Appl. Catal. B Environ. 200, 493–502 (2017)CrossRefGoogle Scholar
  25. 25.
    D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, J. Park, J. Phys. Chem. C 119, 1921–1927 (2015)CrossRefGoogle Scholar
  26. 26.
    H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo, J. Rossmeisl, Phys. Chem. Chem. Phys. 14, 14010–14022 (2012)CrossRefGoogle Scholar
  27. 27.
    G. Liu, X. Gao, K. Wang, D. He, J. Li, Int. J. Hydrog. Energy 41, 17976–17986 (2016)CrossRefGoogle Scholar
  28. 28.
    L.-A. Stern, X. Hu, Faraday Discuss. 176, 363–379 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Cheng, Q. Liu, J. Tian, X. Sun, Y. He, S. Zhai, A.M. Asiri, Int. J. Hydrog. Energy 40, 9866–9871 (2015)CrossRefGoogle Scholar
  30. 30.
    P. Manivasakan, P. Ramasamy, J. Kim, RSC Adv. 5, 33269–33274 (2015)CrossRefGoogle Scholar
  31. 31.
    F. Chekin, H. Tahermansouri, M.R. Besharat, J. Solid State Electrochem. 18, 747–753 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 134, 17253–17261 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, J. Mater. Chem. A 4, 3068–3076 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Ponce, J.-L. Rehspringer, G. Poillerat, J.L. Gautier, Electrochim. Acta 46, 3373–3380 (2001)CrossRefGoogle Scholar
  35. 35.
    W. Song, Z. Ren, S.-Y. Chen, Y. Meng, S. Biswas, P. Nandi, H.A. Elsen, P.-X. Gao, S.L. Suib, ACS Appl. Mater. Interfaces 8, 20802–20813 (2016)CrossRefGoogle Scholar
  36. 36.
    M.B. Stevens, L.J. Enman, A.S. Batchellor, M.R. Cosby, A.E. Vise, C.D.M. Trang, S.W. Boettcher, Chem. Mater. 29, 120–140 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744–6753 (2014)CrossRefGoogle Scholar
  38. 38.
    K.L. Nardi, N. Yang, C.F. Dickens, A.L. Strickler, S.F. Bent, Adv. Energy Mater. 5, 1500412 (2015)CrossRefGoogle Scholar
  39. 39.
    B. Mei, A.A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I.E.L. Stephens, P.C.K. Vesborg, B. Seger, I. Chorkendorff, J. Phys. Chem. Lett 5, 3456–3461 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB)North-West UniversityPotchefstroomSouth Africa

Personalised recommendations