Advertisement

Electrocatalysis

, Volume 9, Issue 2, pp 153–161 | Cite as

The Electrochemical Dissolution of Noble Metals in Alkaline Media

  • Maximilian SchalenbachEmail author
  • Olga Kasian
  • Marc Ledendecker
  • Florian D. Speck
  • Andrea M. Mingers
  • Karl J. J. Mayrhofer
  • Serhiy CherevkoEmail author
Original Article

Abstract

In this study, the electrochemical transient dissolution of polycrystalline silver, gold, iridium, palladium, platinum, rhodium, and ruthenium is examined in 0.05 M NaOH alkaline electrolyte as a function of electrode potential. An inductively coupled plasma mass spectrometer connected to an electrochemical flow cell is used for online detection of the metals dissolution rates. Broad potential windows starting from the hydrogen and going to the oxygen evolution reaction (OER) potentials are used to study the dissolution. The measured dissolution data, such as onsets of dissolution are analyzed and compared with available thermodynamic data. For most metals, at potentials, at which thermodynamics predict metal/solute or metal/oxide transitions, an initiation of the dissolution process is observed. It is suggested that dissolution during metal/oxide transitions is a purely kinetic effect that reflects the solubility of unstable transient oxides. Such oxides can also be formed during the oxygen evolution reaction. The latter fact is used to explain metals dissolution in the region of OER.

Graphical Abstract

Keywords

Dissolution Corrosion Noble metals Mass spectrometry Electrocatalyst 

Notes

Funding information

This research was supported by the German Federal Ministry of Economic Affairs and Energy under Grant No. 03EK3556.

Supplementary material

12678_2017_438_MOESM1_ESM.docx (262 kb)
ESM 1 (DOCX 261 kb)

References

  1. 1.
    J.-H. Jo, S.-C. Yi, J. Power Sources 84, 87 (1999)CrossRefGoogle Scholar
  2. 2.
    M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller, D. Stolten, J. Electrochem. Soc. 163, F3197 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, ACS Catal. 5, 4643 (2015)CrossRefGoogle Scholar
  5. 5.
    A.R. Zeradjanin, J.P. Grote, G. Polymeros, K.J.J. Mayrhofer, Electroanalysis 28, 2256 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Quaino, F. Juarez, E. Santos, W. Schmickler, J. Beilstein, Nanotechnology 5, 846 (2014)Google Scholar
  7. 7.
    S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Catal. Today 262, 170 (2016)CrossRefGoogle Scholar
  8. 8.
    I. Spanos, A.A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, R. Schlögl, ACS Catal. 7, 3768 (2017)CrossRefGoogle Scholar
  9. 9.
    H.A. Miller, F. Vizza, M. Marelli, A. Zadick, L. Dubau, M. Chatenet, S. Geiger, S. Cherevko, H. Doan, R.K. Pavlicek, S. Mukerjee, D.R. Dekel, Nano Energy 33, 293 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Cherevko, A.R. Zeradjanin, A.A. Topalov, N. Kulyk, I. Katsounaros, K.J.J. Mayrhofer, ChemCatChem 6, 2219 (2014)CrossRefGoogle Scholar
  11. 11.
    A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Chem. Sci. 631 (2014)Google Scholar
  12. 12.
    N. Hodnik, P. Jovanovič, A. Pavlišič, B. Jozinović, M. Zorko, M. Bele, V.S. Šelih, M. Šala, S. Hočevar, M. Gaberšček, J. Phys. Chem. C 119, 10140 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Jovanovič, A. Pavlišič, V.S. Šelih, M. Šala, N. Hodnik, M. Bele, S. Hočevar, M. Gaberšček, ChemCatChem 6, 449 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, E. Tada, A. Nishikata, Electrocatalysis 6, 179 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Cherevko, A.R. Zeradjanin, G.P. Keeley, K.J.J. Mayrhofer, J. Electrochem. Soc. 161, 822 (2014)Google Scholar
  16. 16.
    J.F. Llopis, J.M. Gamboa, L. Victori, Electrochim. Acta. 17, 2225 (1972)Google Scholar
  17. 17.
    Y.M. Kolotyrkin, V.V. Losev, A.N. Chemodanov, Mater. Chem. Phys. 19, 1 (1988)CrossRefGoogle Scholar
  18. 18.
    V.S. Bagotzky, E.I. Khrushcheva, M.R. Tarasevich, N.A. Shumilova, J. Power Sources 8, 301 (1982)CrossRefGoogle Scholar
  19. 19.
    M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. (NACE International, Cecelcor, 1974)Google Scholar
  20. 20.
    S.O. Klemm, A.A. Topalov, C.A. Laska, K.J.J. Mayrhofer, Electrochem. Commun. 13, 1533 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Cherevko, N. Kulyk, K. J. J. Mayrhofer, Nano Energy 1 (2015)Google Scholar
  22. 22.
    N. Kulyk, S. Cherevko, M. Auinger, C. Laska, K.J.J. Mayrhofer, J. Electrochem. Soc. 162, H860 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Danilovic, R. Subbaraman, K.-C. Chang, S.H. Chang, Y.J. Kang, J. Snyder, A.P. Paulikas, D. Strmcnik, Y.-T. Kim, D. Myers, V.R. Stamenkovic, N.M. Markovic, J. Phys. Chem. Lett. 5, 2474 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Kötz, H. Neff, S. Stucki, J. Electrochem. Soc. 131, 72 (1984)CrossRefGoogle Scholar
  25. 25.
    A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova, P. Ghignabc, S. Rondininiac, Chem. Sci. 5, 3591 (2014)CrossRefGoogle Scholar
  26. 26.
    H.G. Sanchez Casalongue, M.L. Ng, S. Kaya, D. Friebel, H. Ogasawara, A. Nilsson, Angew. Chem. 126, 7297 (2014)CrossRefGoogle Scholar
  27. 27.
    V. Pfeifer, T.E. Jones, J.J.V. Velez, C. Massue, M.T. Greiner, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Haevecker, A. Knop-Gerickea, R. Schloegel, PCCP 18, 2292 (2016)CrossRefGoogle Scholar
  28. 28.
    M.E.G. Lyons, R.L. Doyle, I. Godwin, M.O. Brien, L. Russell, J. Electrochem. Soc. 159, 932 (2012)Google Scholar
  29. 29.
    B.S. Yeo, A.T. Bell, J. Phys. Chem. C 116, 8394–8400 (2012)Google Scholar
  30. 30.
    O. Diaz-Morales, D. Ferrus-Suspedra, M.T.M. Koper, Chem. Sci. 7, 2639 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T.J. Schmidt, Sci. Rep. 1 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHErlangenGermany
  3. 3.Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations