Stability Testing of Pt x Sn1 − x /C Anodic Catalyst for Renewable Hydrogen Production Via Electrochemical Reforming of Ethanol
Abstract
The stability testing of three different synthesized Pt x Sn1 − x /C anodic catalysts has been demonstrated for the renewable generation of hydrogen via the electrochemical reforming of ethanol in a proton exchange membrane (PEM) electrolysis cell. Three Pt-Sn anodic catalysts with different nominal Pt:Sn ratios of 60:40, 70:30, and 80:20 atomic (at.) % were synthetized and characterized by the means of electrochemical tests and XRD. Among them, the Pt-Sn anodic catalyst with 70:30 at. ratio showed the highest electrochemical active surface area (ECSA) and highest electrochemical reforming activity, which allowed the production of pure H2 with the lowest electrical energy requirement (below 23 kWh·kgH2 −1). The stability of the system was also demonstrated through a long-term chronopotentiometry experiment of 48 h in duration. The potential for practical use and coupling this technology with renewable solar energy, a number of cyclic voltammetry tests (with a low scan rate of 0.19 mV·s−1) were also carried out. These experiments were performed by simulating the electrical power produced by a photovoltaic cell. This test showed good stability/reproducibility of the MEA and, hence, a suitable integration between the two technologies for the sustainable energy storage in the form of hydrogen.
ᅟ
Graphical Abstract
Keywords
Pt-Sn catalyst Ethanol electro-oxidation Hydrogen production Electrochemical reforming Energy storage ElectrolysisNotes
Funding Information
We acknowledge the Spanish Ministry of Economy and Competiveness (project CTQ2016-75491-R) for the financial support. A. B. Calcerrada would like also to thank the Junta de Comunidades de Castilla-La Mancha (JCCM) and the European Social Fund for the financial support.
Supplementary material
References
- 1.A.R. de la Osa, A.B. Calcerrada, J.L. Valverde, E.A. Baranova, A. de Lucas-Consuegra, Electrochemical reforming of alcohols on nanostructured platinum-tin catalyst-electrodes. Appl. Catal. B Environ. 179, 276–284 (2015)CrossRefGoogle Scholar
- 2.C. Lamy, B. Guenot, M. Cretin, and G. Pourcelly. A kinetics analysis of methanol oxidation under electrolysis/fuel cell working conditions. In Symposium on Electrocatalysis 7 - 227th ECS Meeting. 2015. Electrochem. Soc. Inc.Google Scholar
- 3.C.R. Cloutier, D.P. Wilkinson, Electrolytic production of hydrogen from aqueous acidic methanol solutions. Int. J. Hydrog. Energy 35(9), 3967–3984 (2010)CrossRefGoogle Scholar
- 4.A.T. Pham, T. Baba, T. Shudo, Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: influence of change in grain diameter and material of porous metal flow field. I Int. J. Hydrogen Energy 38(24), 9945–9953 (2013)CrossRefGoogle Scholar
- 5.A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int. J. Hydrog. Energy 33(17), 4649–4654 (2008)CrossRefGoogle Scholar
- 6.S. Kongjao, S. Damronglerd, M. Hunsom, Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J. Appl. Electrochem. 41(2), 215–222 (2011)CrossRefGoogle Scholar
- 7.J. de Paula, D. Nascimento, J.J. Linares, Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor. J. Appl. Electrochem. 45(7), 689–700 (2015)CrossRefGoogle Scholar
- 8.A. Caravaca, F.M. Sapountzi, A. De Lucas-Consuegra, C. Molina-Mora, F. Dorado, J.L. Valverde, Electrochemical reforming of ethanol-water solutions for pure H 2 production in a PEM electrolysis cell. Int. J. Hydrog. Energy 37(12), 9504–9513 (2012)CrossRefGoogle Scholar
- 9.C. Lamy, T. Jaubert, S. Baranton, and C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. J. Power Sources, 2014. 245(0): p. 927–936Google Scholar
- 10.A. De Lucas-Consuegra, A.R. De La Osa, A.B. Calcerrada, J.J. Linares, D. Horwat, A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production. J. Power Sources 321, 248–256 (2016)CrossRefGoogle Scholar
- 11.A. Jablonski, A. Lewera, Electrocatalytic oxidation of ethanol on Pt, Pt-Ru and Pt-Sn nanoparticles in polymer electrolyte membrane fuel cell-role of oxygen permeation. Appl. Catal. B Environ. 115-116, 25–30 (2012)CrossRefGoogle Scholar
- 12.A. Caravaca, A. De Lucas-Consuegra, A.B. Calcerrada, J. Lobato, J.L. Valverde, F. Dorado, From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl. Catal. B Environ. 134-135, 302–309 (2013)CrossRefGoogle Scholar
- 13.Y.X. Chen, A. Lavacchi, H.A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5 (2014)Google Scholar
- 14.A. De Lucas-Consuegra, A.B. Calcerrada, A.R. De La Osa, J.L. Valverde, Electrochemical reforming of ethylene glycol. Influence of the operation parameters, simulation and its optimization. Fuel Process. Technol. 127, 13–19 (2014)CrossRefGoogle Scholar
- 15.L. Jiang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. I Int. J. Hydrogen Energy 35(1), 365–372 (2010)CrossRefGoogle Scholar
- 16.A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J. Power Sources 166(1), 87–91 (2007)CrossRefGoogle Scholar
- 17.F. Vigier, C. Coutanceau, F. Hahn, E.M. Belgsir, C. Lamy, On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 563(1), 81–89 (2004)CrossRefGoogle Scholar
- 18.C. Lamy, S. Rousseau, E.M. Belgsir, C. Coutanceau, J.M. Léger, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim. Acta 49(22-23 SPEC. ISS.), 3901–3908 (2004)CrossRefGoogle Scholar
- 19.E.A. Baranova, T. Amir, P.H.J. Mercier, B. Patarachao, D. Wang, Y. Le Page, Single-step polyol synthesis of alloy Pt7Sn3 versus bi-phase Pt/SnOx nano-catalysts of controlled size for ethanol electro-oxidation. J. Appl. Electrochem. 40(10), 1767–1777 (2010)CrossRefGoogle Scholar
- 20.E. Antolini, E.R. Gonzalez, The electro-oxidation of carbon monoxide, hydrogen/carbon monoxide and methanol in acid medium on Pt-Sn catalysts for low-temperature fuel cells: a comparative review of the effect of Pt-Sn structural characteristics. Electrochim. Acta 56(1), 1–14 (2010)CrossRefGoogle Scholar
- 21.E.A. Baranova, C. Bock, D. Ilin, D. Wang, B. MacDougall, Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts. Surf. Sci. 600(17), 3502–3511 (2006)CrossRefGoogle Scholar
- 22.C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J. Am. Chem. Soc. 126(25), 8028–8037 (2004)CrossRefGoogle Scholar
- 23.P. Rupa Kasturi, R. Kalai Selvan, Y.S. Lee, Pt decorated: Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application. RSC Adv. 6(67), 62680–62694 (2016)CrossRefGoogle Scholar
- 24.J. Lobato, H. Zamora, J. Plaza, P. Cañizares, M.A. Rodrigo, Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Appl. Catal. B Environ. 198, 516–524 (2016)CrossRefGoogle Scholar
- 25.R.M. Abdel Hameed, A.E. Fetohi, R.S. Amin, K.M. El-Khatib, Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium. Appl. Surf. Sci. 359, 651–663 (2015)CrossRefGoogle Scholar
- 26.L. Jiang, A. Hsu, D. Chu, R. Chen, Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J. Electrochem. Soc. 156(3), B370–B376 (2009)CrossRefGoogle Scholar
- 27.M. Carmo, A.R. dos Santos, J.G.R. Poco, M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications. J. Power Sources 173(2), 860–866 (2007)CrossRefGoogle Scholar
- 28.W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B Environ. 46(2), 273–285 (2003)CrossRefGoogle Scholar
- 29.M. Chatterjee, A. Chatterjee, S. Ghosh, I. Basumallick, Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim. Acta 54(28), 7299–7304 (2009)CrossRefGoogle Scholar
- 30.E.A. Baranova, Y. Le Page, D. Ilin, C. Bock, B. MacDougall, P.H.J. Mercier, Size and composition for 1-5 nm Ø PtRu alloy nano-particles from Cu Kα X-ray patterns. J. Alloys Compd. 471(1–2), 387–394 (2009)CrossRefGoogle Scholar
- 31.H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim. Acta 52(24), 6622–6629 (2007)CrossRefGoogle Scholar
- 32.J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl. Catal. B Environ. 91(1–2), 269–274 (2009)CrossRefGoogle Scholar
- 33.F.M. Sapountzi, M.N. Tsampas, H.O.A. Fredriksson, J.M. Gracia, J.W. Niemantsverdriet, Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes. Int. J. Hydrog. Energy 42(16), 10762–10774 (2017)CrossRefGoogle Scholar
- 34.S. Song, W. Zhou, J. Tian, R. Cai, G. Sun, Q. Xin, S. Kontou, P. Tsiakaras, Ethanol crossover phenomena and its influence on the performance of DEFC. J. Power Sources 145(2), 266–271 (2005)CrossRefGoogle Scholar
- 35.G. Sasikumar, A. Muthumeenal, S.S. Pethaiah, N. Nachiappan, R. Balaji, Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. Int. J. Hydrog. Energy 33(21), 5905–5910 (2008)CrossRefGoogle Scholar
- 36.J. Datta, A. Dutta, S. Mukherjee, The beneficial role of the cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: Temperature effect and reaction mechanism. J. Phys. Chem. C 115(31), 15324–15334 (2011)CrossRefGoogle Scholar
- 37.A. Dutta, S.S. Mahapatra, J. Datta, High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrog. Energy 36(22), 14898–14906 (2011)CrossRefGoogle Scholar
- 38.S. Song, G. Wang, W. Zhou, X. Zhao, G. Sun, Q. Xin, S. Kontou, P. Tsiakaras, The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance. J. Power Sources 140(1), 103–110 (2005)CrossRefGoogle Scholar
- 39.J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9(5), 597–604 (2009)CrossRefGoogle Scholar
- 40.M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013)CrossRefGoogle Scholar
- 41.S. Zhang, X.Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194(2), 588–600 (2009)CrossRefGoogle Scholar
- 42.L. Zhang, D. Xia, Electrocatalytic activity of ordered intermetallic PtSb for methanol electro-oxidation. Appl. Surf. Sci. 252(6), 2191–2195 (2006)CrossRefGoogle Scholar