, Volume 9, Issue 1, pp 31–39 | Cite as

Investigating the Kinetics and Mechanism of Organic Oxidation in Parallel with the Oxygen Evolution Reaction

  • Asadollah Kariman
  • Aaron T. MarshallEmail author
Original Research


In this paper, the mechanism of organic oxidation in parallel with the oxygen evolution reaction at an electrode following the “active” anode mechanism is investigated. The active anode (IrO2-Sb2O5-SnO2/Ti) was prepared via standard thermal decomposition method and 4-nitrophenol (4-NP) chosen as the model organic compound. It is firstly confirmed that this anode does follow the “active” anode mechanism, with the rate of 4-NP oxidation being dependent on the coverage adsorbed oxygen on the surface of the anode. This surface coverage can be estimated by fitting steady-state polarisation curves with a micro-kinetic model describing the oxygen evolution behaviour of the anode. This surface coverage dependent oxidation rate can only be observed at relatively low overpotentials where mass transport limitations are avoided. At high overpotentials, the rate of oxidation is completely controlled by mass transfer of 4-NP to the anode surface, with the measured and calculated rate constants agreeing closely. It is also shown that the instantaneous current efficiency can be directly calculated from the measured pseudo first-order rate constant in both the kinetic and mass transport limited regimes. Using this analysis method, it was found that the instantaneous current efficiency for 4-NP oxidation is less than 100% in both regimes and only approached 100% at very low overpotentials. This finding is important as in prior literature, it is often believed that the instantaneous current efficiency of electrochemical wastewater oxidation will be 100% provided that mass transfer does not limit the process, due to an underlying assumption that the rate of organic oxidation is much larger than the OER.

Graphical Abstract

The surface coverage of intermediates of the oxygen evolution reaction control the oxidation rate of 4-nitrophenol


Organic oxidation Electrochemical wastewater treatment Oxygen evolution reaction Dimensionally stablised anodes Electrocatalysis 


  1. 1.
    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53(1), 51–59 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Parsons. Advanced oxidation processes for water and wastewater treatment (IWA, London, 2004)Google Scholar
  3. 3.
    A. Sonune, R. Ghate, Developments in wastewater treatment methods. Desalination. 167, 55–63 (2004)CrossRefGoogle Scholar
  4. 4.
    R. Helmer, I. Hespanhol. Water pollution control: A guide to the use of water quality management principles, 1st edn. (E&FN Spon, London, 1997)Google Scholar
  5. 5.
    C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, L. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83(6), 769–776 (2008)CrossRefGoogle Scholar
  6. 6.
    I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)CrossRefGoogle Scholar
  7. 7.
    M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 44(23), 2577–2641 (2014)CrossRefGoogle Scholar
  8. 8.
    O.J. Murphy, G.D. Hitchens, L. Kaba, C.E. Verostko, Direct electrochemical oxidation of organics for waste-water treatment. Water Res. 26(4), 443–451 (1992)CrossRefGoogle Scholar
  9. 9.
    C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta. 39(11–12), 1857–1862 (1994)CrossRefGoogle Scholar
  10. 10.
    M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009)CrossRefGoogle Scholar
  11. 11.
    C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12), 1324–1340 (2006)CrossRefGoogle Scholar
  12. 12.
    Á. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. J. Chem. Technol. Biotechnol. 84(12), 1747–1755 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Adams, M. Tian, A. Chen, Design and electrochemical study of2-based mixed oxide electrodes. Electrochim. Acta. 54(5), 1491–1498 (2009)CrossRefGoogle Scholar
  14. 14.
    B.J. Hernlem, Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell. Water Res. 39(11), 2245–2252 (2005)CrossRefGoogle Scholar
  15. 15.
    C.A. Martínez-Huitle, S. Ferro, A. De Battisti, Electrochemical incineration of oxalic acid - Role of electrode material. Electrochim. Acta. 49(22-23), 4027–4034 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 507(1–2), 206–214 (2001)CrossRefGoogle Scholar
  17. 17.
    A.M. Polcaro, A. Vacca, S. Palmas, M. Mascia, Electrochemical treatment of wastewater containing phenolic compounds: Oxidation at boron-doped diamond electrodes. J. Appl. Electrochem. 33(10), 885–892 (2003)CrossRefGoogle Scholar
  18. 18.
    A.M. Polcaro, M. Mascia, S. Palmas, A. Vacca, Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim. Acta. 49(4), 649–656 (2004)CrossRefGoogle Scholar
  19. 19.
    O. Simond, C. Comninellis, Anodic oxidation of organics on Ti/IrO2 anodes using Nafionas electrolyte. Electrochim. Acta. 42(13–14), 2013–2018 (1997)CrossRefGoogle Scholar
  20. 20.
    M. Tian, L. Bakovic, A.C. Chen, Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochim. Acta. 52(23), 6517–6524 (2007)CrossRefGoogle Scholar
  21. 21.
    P. Cañizares, C. Saez, J. Lobato, M.A. Rodrigo, Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Indus. Eng. Chem. Res. 43(9), 1944–1951 (2004)CrossRefGoogle Scholar
  22. 22.
    L.S. Andrade, T.T. Tasso, D.L. da Silva, R.C. Rocha, N. Bocchi, S.R. Biaggio, On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the reactive orange 16 dye. Electrochim. Acta. 54(7), 2024–2030 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Bock, B. MacDougall, The electrochemical oxidation of organics using tungsten oxide based electrodes. Electrochim. Acta. 47(20), 3361–3373 (2002)CrossRefGoogle Scholar
  24. 24.
    F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, A. De Battisti, Electrochemical incineration of glucose as a model organic substrate - II role of active chlorine mediation. J. Electrochem. Soc. 147 (2), 592–596 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Fierro, L. Ouattara, E.H. Calderon, E. Passas-Lagos, H. Baltruschat, C. Comninellis, Investigation of formic acid oxidation on Ti/IrO2 electrodes. Electrochim. Acta. 54(7), 2053–2061 (2009)CrossRefGoogle Scholar
  26. 26.
    R.J. Watts, M.S. Wyeth, D.D. Finn, A.L. Teel, Optimization of Ti/SnO2-Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 38(1), 31–37 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part I. General description and application to inactive electrodes. Indus. Eng. Chem. Res. 43(9), 1915–1922 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Mascia, A. Vacca, S. Palmas, A.M. Polcaro, Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: Modelling of surface reactions. J. Appl. Electrochem. 37(1), 71–76 (2007)CrossRefGoogle Scholar
  29. 29.
    O. Simond, V. Schaller, C. Comninellis, Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta. 42(13-14), 2009–2012 (1997)CrossRefGoogle Scholar
  30. 30.
    P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part II. Application to active electrodes. Indus. Eng. Chem. Res. 43(9), 1923–1931 (2004)CrossRefGoogle Scholar
  31. 31.
    O. Scialdone, Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim. Acta. 54(26), 6140–6147 (2009)CrossRefGoogle Scholar
  32. 32.
    M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola, C. Comninellis, Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148(5), D60–D64 (2001)CrossRefGoogle Scholar
  33. 33.
    H.B. Beer, The invention and industrial-development of metal anodes. J. Electrochem. Soc. 127(8), C303–C307 (1980)CrossRefGoogle Scholar
  34. 34.
    A.F. Gil, L. Galicia, I. Gonzalez, Diffusion coefficients and electrode kinetic parameters of different Fe(III)-sulfate complexes. J. Electroanal. Chem. 417(1-2), 129–134 (1996)CrossRefGoogle Scholar
  35. 35.
    U.K. Klaning, K. Sehested, J. Holcman, Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction \(\text {ClO}_{2}^{-} + \text {O}_{3} \rightleftharpoons \text {O}_{3}^{-} + \text {ClO}_{2}\). J. Phys. Chem. 89(5), 760–763 (1985)CrossRefGoogle Scholar
  36. 36.
    C. De Pauli, S. Trasatti, Composite materials for electrocatalysis of O2 evolution IrO2 + SnO2 in acid solution. J. Electroanal. Chem. 538–539, 145–151 (2002)CrossRefGoogle Scholar
  37. 37.
    J. O’M Bockris, Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen. J. Chem. Phys. 24(4), 817–827 (1956)CrossRefGoogle Scholar
  38. 38.
    C. De Pauli, S. Trasatti, Electrochemical surafce characterization of IrO2 + SnO2 mixed oxide electrodes. J. Electroanal. Chem. 396, 161–168 (1995)CrossRefGoogle Scholar
  39. 39.
    A.T. Marshall, L. Vaisson-Béthune, Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 61, 23–26 (2015)CrossRefGoogle Scholar
  40. 40.
    E. Gileadi, Problems in interfacial electrochemistry that have been swept under the carpet. J. Solid State Electrochem. 15(7–8), 1359–1371 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Niesner, A. Heintz, Diffusion coefficients of aromatics in aqueous solution. J. Chem. Eng. Data. 45(6), 1121–1124 (2000)CrossRefGoogle Scholar
  42. 42.
    A. Kapalka, G. Foti, C. Comninellis, Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38(1), 7–16 (2008)CrossRefGoogle Scholar
  43. 43.
    J. Lea, A.A. Adesina, Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension. J. Chem. Technol. Biotechnol. 76(8), 803–810 (2001)CrossRefGoogle Scholar
  44. 44.
    S. Chaliha, K.G. Bhattacharyya, P. Paul, Oxidation of 4-nitrophenol in water over Fe(III) Co(II), and Ni(II) impregnated MCM41 catalysts. J. Chem. Technol. Biotechnol. 83(10), 1353–1363 (2008)CrossRefGoogle Scholar
  45. 45.
    J. Cornard, Rasmiwetti, J. Merlin, Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV–visible, Raman, DFT and TD-DFT calculations. Chem. Phys. 309(2–3), 239–249 (2005)CrossRefGoogle Scholar
  46. 46.
    M.I. Sirajuddin, A. Niaz, A. Shah, A. Rauf, Bhanger Ultra-trace level determination of hydroquinone in waste photographic solutions by UV–vis spectrophotometry. Talanta. 72(2), 546–553 (2007)CrossRefGoogle Scholar
  47. 47.
    M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 34(16), 3474–3479 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations