Advertisement

Electrocatalysis

, Volume 9, Issue 1, pp 22–30 | Cite as

Influence of Carbon Support on Catalytic Layer Performance of Proton Exchange Membrane Fuel Cells

  • Ksenia Novikova
  • Alexandra Kuriganova
  • Igor Leontyev
  • Ekaterina Gerasimova
  • Olga Maslova
  • Aydar Rakhmatullin
  • Nina Smirnova
  • Yuri Dobrovolsky
Original Research

Abstract

Pt-based catalysts supported onto various carbon nanotubes (CNTs) and carbon black Vulcan XC-72 have been studied in this work. The samples have been prepared via electrochemical dispersion technique. The carbon nanotubes exhibit the mesoporous morphology with the pore size of 5—30 nm, while Vulcan XC-72 support exhibits a microporous structure. The agglomeration of Pt particles (5—7 nm) is found to be more extended at the carbon nanotubes compared to the carbon black. The examination of the synthesized catalysts in a catalytic membrane electrode assembly layer reveals that CNTs favor a power density higher than in the carbon black support owing to a more suitable porous structure of the catalyst layer. Moreover, the maximum characteristics of membrane electrode assembly are obtained for few-walled carbon nanotubes with a broad carbon having size distribution.

Graphical Abstract

Keywords

PEM fuel cell Pt/C Carbon support Carbon nanotubes Catalytic layer structure 

Notes

Acknowledgements

Funding information

This study was funded by the Russian Science Foundation (grant no. 14-23-00078).

Supplementary material

12678_2017_416_MOESM1_ESM.docx (188 kb)
ESM 1 (DOCX 188 kb)

References

  1. 1.
    J. Zhang, in Fundamentals and applications. PEM fuel cell electrocatalysts and catalyst layers (Springer Publisher, New York, 2008)Google Scholar
  2. 2.
    K. Zhou, Y. Li, Angew. Chem. Int. Ed. 51, 602 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Li, X. Fu, Z. Mao, Y. Yang, T. Qiu, Q. Wu, Nanoscale Res. Lett. 11, 3 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, J. Chem. Phys. B 110, 15353 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Yu, J. Zeng, B. Lim, Y. Xia, Adv. Mater. 22, 5188 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Dhanasekaran, S.V. Selvaganesh, L. Sarathi, S.D. Bhat, Electrocatalysis 7, 495 (2016)CrossRefGoogle Scholar
  7. 7.
    K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, Fuel Cells 12, 146 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Qiu, H. Huang, J. Du, T. Feng, W. Zhang, Y. Gan, X. Tao, J. Chem. Phys. C 117, 13770 (2013)CrossRefGoogle Scholar
  9. 9.
    M.D. Obradović, B.M. Babić, V.R. Radmilović, N.V. Krstajić, S.L. Gojković, Int. J. Hydrog. Energy 37, 10671 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zeng, C. Francia, C. Gerbaldi, V. Baglio, S. Specchia, A.S. Aricò, P. Spinelli, Electrochim. Acta 94, 80 (2013)CrossRefGoogle Scholar
  11. 11.
    U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J. Chem. Phys. B 106, 4181 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Antolini, Appl. Catal, B 88, 1 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Liu, R. Zhang, W. Chen, Chem. Rev. 114, 5117 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Chem. Phys. B 108, 19960 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Langmuir 22, 2392 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, L. Gao, J. Alloys Compd. 505, 604 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Jung, B. Park, J. Kim, Nanoscale Res. Lett. 7, 34 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Tan, X. Huang, H. Zhang, Mater. Today 16, 29 (2013)CrossRefGoogle Scholar
  19. 19.
    K.G. Sun, J.S. Chung, S.H. Hur, Nanoscale Res. Lett. 10, 257 (2015)CrossRefGoogle Scholar
  20. 20.
    I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, S. Anshin, I. Mazov, J.P. Issi, D. Kusnezov, Compos. Sci. Technol. 129, 79 (2016)CrossRefGoogle Scholar
  21. 21.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, N. Yan, Lett 4, 345 (2004)Google Scholar
  23. 23.
    C. Gupta, P.H. Maheshwari, S.R. Dhakate, Mater. Renew. Sustain. Energy 5, 2 (2016)CrossRefGoogle Scholar
  24. 24.
    Z.A. Xiong, S. Liao, S. Hou, H. Zou, D. Dang, X. Tian, H. Nan, T. Shu, L. Du, Int. J. Hydrog. Energy 41, 9191 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Zheng, Z. Dou, Y. Fang, M. Li, X. Wu, J. Zeng, Z. Hou, S. Liao, J. Power Sources 306, 448 (2016)CrossRefGoogle Scholar
  26. 26.
    L.-M. Zhang, X.-L. Sui, L. Zhao, J.-J. Zhang, D.-M. Gu, Z.-B. Wang, Carbon 108, 561 (2016)CrossRefGoogle Scholar
  27. 27.
    Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Langmuir 18, 4054 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Kim, S.-J. Park, J. Power Sources 159, 42 (2006)CrossRefGoogle Scholar
  29. 29.
    E.N. Gribov, A.N. Kuznetsov, I.N. Voropaev, V.A. Golovin, P.A. Simonov, A.V. Romanenko, A.G. Okunev, Electrocatalysis 7, 159 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, J. Power Sources 194, 588 (2009)CrossRefGoogle Scholar
  31. 31.
    I. Leontyev, A. Kuriganova, Y. Kudryavtsev, B. Dkhil, N. Smirnova, Appl. Catal, A 431–432, 120 (2012)CrossRefGoogle Scholar
  32. 32.
    N.V. Smirnova, A.B. Kuriganova, K.S. Novikova, E.V. Gerasimova, Russ. J. Electrochem. 50, 899 (2014)CrossRefGoogle Scholar
  33. 33.
    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14, 235 (1996)CrossRefGoogle Scholar
  34. 34.
    V. Dyadkin, P. Pattison, V. Dmitriev, D. Chernyshov, J. Synchrotron Radiat. 23, 825 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66 (1994).  https://doi.org/10.1351/pac199466081739
  36. 36.
    M.R. Ammar, E. Charon, J.N. Rouzaud, J. Aleon, G. Guimbretière, P. Simon, Spectrosc. Lett. 44, 535 (2011)CrossRefGoogle Scholar
  37. 37.
    A.C. Ferrari, Solid State Commun. 143, 47 (2007)CrossRefGoogle Scholar
  38. 38.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  39. 39.
    O.A. Maslova, M.R. Ammar, G. Guimbretière, J.N. Rouzaud, P. Simon, Phys. Rev. B 86, 134205 (2012)CrossRefGoogle Scholar
  40. 40.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  41. 41.
    O. Beyssac, B. Goffé, J.-P. Petitet, E. Froigneux, M. Moreau, J.-N. Rouzaud, Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 2267 (2003)CrossRefGoogle Scholar
  42. 42.
    A. Hirsch, Angew. Chem. Int. Ed. 41, 1853 (2002)CrossRefGoogle Scholar
  43. 43.
    J. Rodríguez-Carvajal, Commission on powder diffraction (IUCr). Newsletter 26, 12 (2001)Google Scholar
  44. 44.
    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987)CrossRefGoogle Scholar
  45. 45.
    I.N. Leontyev, S.V. Belenov, V.E. Guterman, P. Haghi-Ashtiani, A.P. Shaganov, B. Dkhil, J. Chem. Phys. C 115, 5429 (2011)CrossRefGoogle Scholar
  46. 46.
    I.N. Leontyev, A.B. Kuriganova, N.G. Leontyev, L. Hennet, A. Rakhmatullin, N.V. Smirnova, V. Dmitriev, RSC Adv. 4, 35959 (2014)CrossRefGoogle Scholar
  47. 47.
    A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, J. Electroanal. Chem. 644, 117 (2010)CrossRefGoogle Scholar
  48. 48.
    A. López-Cudero, A. Cuesta, C. Gutiérrez, J. Electroanal. Chem. 579, 1 (2005)CrossRefGoogle Scholar
  49. 49.
    A. López-Cudero, Á. Cuesta, C. Gutiérrez, J. Electroanal. Chem. 586, 204 (2006)CrossRefGoogle Scholar
  50. 50.
    A. Wieckowski, E. Savinova, C. Vayenas, Catalysis and electrocatalysis at nanoparticle surfaces (CRC Press, Boca Raton, 2003)CrossRefGoogle Scholar
  51. 51.
    F. Maillard, E.R. Savinova, U. Stimming, J. Electroanal. Chem. 599, 221 (2007)CrossRefGoogle Scholar
  52. 52.
    M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 127, 6819 (2005)CrossRefGoogle Scholar
  53. 53.
    J. Li, Y. Liang, Q. Liao, X. Zhu, X. Tian, Electrochim. Acta 54, 1277 (2009)CrossRefGoogle Scholar
  54. 54.
    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Phys. Chem. Chem. Phys. 7, 385 (2005)CrossRefGoogle Scholar
  55. 55.
    R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163, 76 (2006)CrossRefGoogle Scholar
  56. 56.
    J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Beilstein J. Nanotechnol. 5, 44 (2014)CrossRefGoogle Scholar
  57. 57.
    L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J. Am. Chem. Soc. 132, 596 (2010)CrossRefGoogle Scholar
  58. 58.
    L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, Electrochim. Acta 110, 273 (2013)CrossRefGoogle Scholar
  59. 59.
    P. Jovanovič, U. Petek, N. Hodnik, F. Ruiz-Zepeda, M. Gatalo, M. Šala, V. Šelih, T. Patrick Fellinger, M. Gaberšček, Phys.Chem. Chem. Phys. 19, 21446 (2017)CrossRefGoogle Scholar
  60. 60.
    A. Pandy, Z. Yang, M. Gummalla, V.V. Atrazhev, N.Y. Kuzminyh, V.I. Sultanov, S. Burlatsky, J. Electrochem. Soc. 160, F972 (2013)CrossRefGoogle Scholar
  61. 61.
    G. Cognard, G. Ozouf, C. Beauger, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, M. Chatenet, F. Maillard, Electrocatalysis 8, 51 (2017)CrossRefGoogle Scholar
  62. 62.
    G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titirici, J. Mater. Chem. A 4, 2581 (2016)CrossRefGoogle Scholar
  63. 63.
    M.A. Molina-Garcia, N.V. Rees, RSC Adv. 6, 94669 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ksenia Novikova
    • 1
    • 2
  • Alexandra Kuriganova
    • 1
  • Igor Leontyev
    • 3
  • Ekaterina Gerasimova
    • 2
  • Olga Maslova
    • 3
    • 4
  • Aydar Rakhmatullin
    • 5
  • Nina Smirnova
    • 1
    • 6
  • Yuri Dobrovolsky
    • 2
  1. 1.Platov South-Russian State Polytechnic University (NPI)NovocherkasskRussia
  2. 2.Institute of Problems of Chemical Physics of RASChernogolovkaRussia
  3. 3.Southern Federal UniversityRostov-on-DonRussia
  4. 4.Universidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.CNRS, CEMHTI UPR3079University of OrléansOrléansFrance
  6. 6.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations