Electrocatalysis

, Volume 9, Issue 1, pp 1–9 | Cite as

Electrochemical Sensor Using Molecular Imprinting Polymerization Modified Electrodes to Detect Methyl Parathion in Environmental Media

  • Fa-Ru Wang
  • Gang-Juan Lee
  • Neelamegan Haridharan
  • Jerry J. Wu
Original Research
  • 71 Downloads

Abstract

In this research, the electrochemical sensor was fabricated based on glassy carbon electrode decorated by the reduced gold nanoparticles and molecularly imprinted polymer (MIP) on the electrode surface with methyl parathion (MP) as the template molecule. Four parameters, such as amount of gold nanoparticles, deposition time of gold nanoparticles, pH of acetate buffer solution, and extraction time of ethanol acidic solution, have been successfully determined by achieving the optimal sensor preparation. The MP in aqueous matrix can be quantitatively determined in the range of 0.05 to 15 μM with two linear equations at low and high ranges. In addition, the selectivity of the sensor as prepared toward the MP measurement is superior by comparing with similar structured compounds, such as imidacloprid and fenitrothion. This study also demonstrates that the deviation of current response from the MP in different matrix samples is negligible using MIP/Au/glassy carbon electrode sensor with recoveries ranged from 87.7 to 124.8%.

Graphical Abstract

Keywords

Electrochemical sensor Nanostructured materials Molecular imprinting polymerization Methyl parathion 

Notes

Acknowledgements

The authors wish to thank for the financial support by the Ministry of Science and Technology (MOST) in Taiwan under the contract number of 105-2221-E-035-002-MY3. The support in providing the fabrication and measurement facilities from the Precision Instrument Support Center of Feng Chia University is also acknowledged.

References

  1. 1.
    I. Bakas, A. Hayat, S. Piletsky, E. Piletska, M.M. Chehimi, T. Noguer, R. Rouillon, Talanta 130, 294 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Li, Z. Wang, B. Wu, X. Liu, Z. Xue, X. Lu, Electrochim. Acta 62, 319 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Tan, Q. Hu, J. Wu, X. Li, P. Li, H. Yu, X. Li, F. Lei, Sensor Actuat. B-Chem 220, 216 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Liu, W. Guo, Z. Yin, Biosens. Bioelectron. 53, 440 (2014)CrossRefGoogle Scholar
  5. 5.
    M.Y. Wang, J.R. Huang, M. Wang, D.E. Zhang, J. Chen, Food Chem. 151, 191 (2014)CrossRefGoogle Scholar
  6. 6.
    X. Xue, Q. Wei, D. Wu, H. Li, Y. Zhang, R. Feng, B. Du, Electrochim. Acta 116, 366 (2014)CrossRefGoogle Scholar
  7. 7.
    J.G. Pacheco, M. Castro, S. Machado, M.F. Barroso, H.P.A. Nouws, C. Delerue-Matos, Sensors Actuat. B-Chem 215, 107 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Bai, X. Zhang, Y. Peng, X. Hong, Y. Liu, S. Jiang, Z. Gao, Sensor Actuat. B-Chem 238, 420 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Wang, O.K. Okoth, K. Yan, J. Zhang, Sensor Actuat. B-Chem 236, 294 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Li, J. Liu, M. Liu, F. Yu, L. Zhang, H. Tang, B.C. Ye, L. Lai, Biosens. Bioelectron. 78, 308 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Li, J. Liu, M. Liu, F. Yu, L. Zhang, H. Tang, B.C. Ye, L. Lai, Biosens. Bioelectron. 49, 199 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, J. Liu, X. Ma, P. Zuo, B.C. Ye, Y. Li, Biosens. Bioelectron. 80, 491 (2016)CrossRefGoogle Scholar
  13. 13.
    K.K. Aswini, A.M. Vinu Mohan, V.M. Biju, Mat. Sci. Eng. C 65, 116 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Li, J. Liu, M. Liu, F. Yu, L. Zhang, H. Tang, B.C. Ye, L. Lai, Electrochem. Commun. 64, 42 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Deiminiat, G.H. Rounaghi, M.H. Arbab-Zavar, Sensor Actuat. B-Chem 238, 651 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Tan, L. Cong, X. Li, Q. Zhao, H. Zhao, X. Quan, J. Chen, Sensor Actuat. B-Chem 233, 599 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Yun, M. Pan, G. Fang, Y. Yang, T. Guo, J. Deng, B. Liu, S. Wang, Sensor Actuat. B-Chem. 238, 32 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Yang, F. Zhao, Electrochim. Acta 174, 33 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Zhao, B. Zeng, F. Zhao, Electrochim. Acta 146, 611 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Yang, F. Zhao, Biosens. Bioelectron. 64, 416 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Li, Z. Wang, G. Zhan, Colloid Surface B 82, 40 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Yang, F. Zhao, B. Zeng, Electrochim. Acta 210, 293 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Jiang, D. Jiang, J. Shao, X. Sun, Biosens. Bioelectron. 75, 411 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Liu, B. Xiao, L. Cui, M. Wang, Mat. Sci. Eng. C 55, 457 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Li, H. Song, L. Zhang, P. Zuo, B.C. Ye, J. Yao, W. Chen, Biosens. Bioelectron. 78, 308 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Fa-Ru Wang
    • 1
  • Gang-Juan Lee
    • 1
  • Neelamegan Haridharan
    • 1
  • Jerry J. Wu
    • 1
  1. 1.Department of Environmental Engineering and ScienceFeng Chia UniversityTaichungTaiwan

Personalised recommendations