, Volume 8, Issue 6, pp 647–656 | Cite as

Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211)

  • Shan Ping Liu
  • Ming Zhao
  • Wang GaoEmail author
  • Qing Jiang
  • Timo JacobEmail author
Original Article


CO2 reduction has been pursued for decades as an effective way to produce useful fuels and to mitigate global warming at the same time. Methanol synthesis from CO2 hydrogenation over Cu-based catalysts plays an important role in the chemical and energy industries. However, fundamental questions regarding the reaction mechanism and key reaction intermediates of this process are still unclear. To address these issues, we studied the CO2 hydrogenation process using density functional theory (DFT) combined with van der Waals (vdW) force corrections, finding that the most effective pathway proceeds along the reaction series CO* → CHO* → CH2O* → CH2OH* → CH3OH* with the reactive intermediate CH2O*, which is consistent with experimental findings. Additionally, we find that water molecules play an inhibiting role in the reaction, while H bonds and vdW forces have an essential effect on the reaction mechanisms. These findings shed light on the reaction mechanism of CH3OH formation from CO2 hydrogenation and reveal the essence of H2O in this reaction, providing a useful basis for preceding studies.

Graphical Abstract

Adsorption configurations of COH on (a) bare Cu(211) and (b) on Cu(211) with a co-adsorbed H2O chain. The corresponding reaction pathways on these two surfaces (c and d) have been calculated using density functional theory combined with van der Waals force corrections. Based on these calculations we obtain the most promising pathway and reveal the drastic effect of water molecules.


Density functional theory CO2 reduction Electrocatalysis Copper 



The authors acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) through the grant proposal (JA1072/9-1 and 9-2), which was part of the research unit DFG-FOR1376. Further, support by the Program for Thousand Young Talents Plan and the National Natural Science Foundation of China (No. 21673095, 51631004), the computing resources of High Performance Computing Center of Jilin University, and National Supercomputing Center in Jinan and in Shenzhen China are acknowledged. Finally, the authors also acknowledge the computer time supported by the state of Baden-Württemberg through the bwHPC project and the DFG through grant number INST40/467-1 FUGG.

Supplementary material

12678_2017_403_MOESM1_ESM.docx (786 kb)
ESM 1 (DOCX 786 kb).


  1. 1.
    E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)CrossRefGoogle Scholar
  2. 2.
    K.C. Waugh, Methanol synthesis. Catal. Today 15, 51–75 (1992)CrossRefGoogle Scholar
  3. 3.
    K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014)CrossRefGoogle Scholar
  6. 6.
    O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55, 1–16 (2016)CrossRefGoogle Scholar
  7. 7.
    E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008)CrossRefGoogle Scholar
  8. 8.
    L.V. MacDougall, Methanol to fuels routes—the achievements and remaining problems. Catal. Today 8, 337–369 (1991)CrossRefGoogle Scholar
  9. 9.
    L.K. Rihko-Struckmann, A. Peschel, R. Hanke-Rauschenbach, K. Sundmacher, Assessment of methanol synthesis utilizing exhaust CO2 for chemical storage of electrical energy. Ind. Eng. Chem. Res. 49, 11073–11078 (2010)CrossRefGoogle Scholar
  10. 10.
    G.A. Olah, Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005)CrossRefGoogle Scholar
  11. 11.
    J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsøe, H. Topsøe, B.S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Muhler, E. Törnqvist, L.P. Nielsen, B.S. Clausen, H. Topsøe, On the role of adsorbed atomic oxygen and CO2 in copper based methanol synthesis catalysts. Catal. Lett. 25, 1–10 (1994)CrossRefGoogle Scholar
  13. 13.
    P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002)CrossRefGoogle Scholar
  14. 14.
    X. Dong, H.-B. Zhang, G.-D. Lin, Y.-Z. Yuan, K.R. Tsai, Highly active CNT-promoted cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2. Catal. Lett. 85, 237–246 (2003)CrossRefGoogle Scholar
  15. 15.
    J.S. Lee, K.I. Moon, S.H. Lee, S.Y. Lee, Y.G. Kim, Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2 and CO/H2. Catal. Lett. 34, 93–99 (1995)CrossRefGoogle Scholar
  16. 16.
    F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S.C. Tsang, Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed. 50, 2162–2165 (2011)CrossRefGoogle Scholar
  17. 17.
    O.-S. Joo, K.-D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.-H. Han, S.-J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind. Eng. Chem. Res. 38, 1808–1812 (1999)CrossRefGoogle Scholar
  18. 18.
    K.M.V. Bussche, G.F. Froment, A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal. 161, 1–10 (1996)CrossRefGoogle Scholar
  19. 19.
    E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J. Catal. 328, 43–48 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Yoshihara, C.T. Campbell, Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J. Catal. 161, 776–782 (1996)CrossRefGoogle Scholar
  21. 21.
    G.C. Chinchen, K.C. Waugh, D.A. Whan, The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 25, 101–107 (1986)CrossRefGoogle Scholar
  22. 22.
    P.B. Rasmussen, M. Kazuta, I. Chorkendorff, Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surf. Sci. 318, 267–280 (1994)CrossRefGoogle Scholar
  23. 23.
    J. Nakamura, Y. Choi, T. Fujitani, On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 22, 277–285 (2003)CrossRefGoogle Scholar
  24. 24.
    Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 12, 9909–9917 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969–974 (2016)CrossRefGoogle Scholar
  27. 27.
    S.A. Kondrat, P.J. Smith, P.P. Wells, P.A. Chater, J.H. Carter, D.J. Morgan, E.M. Fiordaliso, J.B. Wagner, T.E. Davies, L. Lu, J.K. Bartley, S.H. Taylor, M.S. Spencer, C.J. Kiely, G.J. Kelly, C.W. Park, M.J. Rosseinsky, G.J. Hutchings, Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531, 83–87 (2016)CrossRefGoogle Scholar
  28. 28.
    R. van den Berg, G. Prieto, G. Korpershoek, L.I. van der Wal, A.J. van Bunningen, S. Lægsgaard-Jørgensen, P.E. de Jongh, K.P. de Jong, Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 7, 13057 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on cu/ZnO catalysts. Science 355, 1296–1299 (2017)CrossRefGoogle Scholar
  30. 30.
    W. Janse van Rensburg, M.A. Petersen, M.S. Datt, J.-A. den Berg, P. Helden, On the kinetic interpretation of DFT-derived energy profiles: Cu-catalyzed methanol synthesis. Catal. Lett. 145, 559–568 (2014)CrossRefGoogle Scholar
  31. 31.
    G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl. Catal. 30, 333–338 (1987)CrossRefGoogle Scholar
  32. 32.
    Y. Yang, C.A. Mims, D.H. Mei, C.H.F. Peden, C.T. Campbell, Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013)CrossRefGoogle Scholar
  33. 33.
    E.E. Ortelli, J.M. Weigel, A. Wokaun, Methanol synthesis pathway over Cu/ZrO2 catalysts: a time-resolved D RIFT 13C-labelling experiment. Catal. Lett. 54, 41–48 (1998)CrossRefGoogle Scholar
  34. 34.
    J. Ye, C. Liu, D. Mei, Q. Ge, Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal. 3, 1296–1306 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Kiss, J. Frenzel, N.N. Nair, B. Meyer, D. Marx, Methanol synthesis on ZnO(0001). III. Free energy landscapes, reaction pathways, and mechanistic insights. J. Chem. Phys. 134, 064710 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Yang, M.G. White, P. Liu, Theoretical study of methanol synthesis from CO2 yydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C 116, 248–256 (2012)CrossRefGoogle Scholar
  37. 37.
    Y.-F. Zhao, R. Rousseau, J. Li, D. Mei, Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface. J. Phys. Chem. C 116, 15952–15961 (2012)CrossRefGoogle Scholar
  38. 38.
    C. Liu, P. Liu, Mechanistic study of methanol synthesis from CO2 and H2 on a modified model Mo6S8 cluster. ACS Catal. 5, 1004–1012 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Studt, M. Behrens, E.L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J.B. Varley, F. Abild-Pedersen, J.K. Nørskov, R. Schlögl, The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7, 1105–1111 (2015)CrossRefGoogle Scholar
  40. 40.
    F. Studt, F. Abild-Pedersen, J.B. Varley, J.K. Nørskov, CO and CO2 hydrogenation to methanol calculated using the BEEF-vdW functional. Catal. Lett. 143, 71–73 (2012)CrossRefGoogle Scholar
  41. 41.
    Q.-L. Tang, Q.-J. Hong, Z.-P. Liu, CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J. Catal. 263, 114–122 (2009)CrossRefGoogle Scholar
  42. 42.
    L.C. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 1, 365–384 (2011)CrossRefGoogle Scholar
  43. 43.
    A.J. Medford, J. Sehested, J. Rossmeisl, I. Chorkendorff, F. Studt, J.K. Nørskov, P.G. Moses, Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001). J. Catal. 309, 397–407 (2014)CrossRefGoogle Scholar
  44. 44.
    Y.-F. Zhao, Y. Yang, C. Mims, C.H.F. Peden, J. Li, D. Mei, Insight into methanol synthesis from CO2 hydrogenation on Cu(1 1 1): Complex reaction network and the effects of H2O. J. Catal. 281, 199–211 (2011)CrossRefGoogle Scholar
  45. 45.
    X. Nie, W. Luo, M.J. Janik, A. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Hori, in In Modern aspects of electrochemistry, ed. by C. Vayenas, R. White, M. Gamboa-Aldeco. Electrochemical CO2 reduction on metal electrodes (Springer, New York, 2008), pp. 89–189CrossRefGoogle Scholar
  47. 47.
    J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Wu, M. Saito, M. Takeuchi, T. Watanabe, The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl. Catal. A-Gen. 218, 235–240 (2001)CrossRefGoogle Scholar
  49. 49.
    M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 14, 2717 (2002)CrossRefGoogle Scholar
  50. 50.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  51. 51.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)CrossRefGoogle Scholar
  52. 52.
    V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys. Rev. Lett. 108, 146103 (2012)CrossRefGoogle Scholar
  53. 53.
    J. Wellendorff, T.L. Silbaugh, D. Garcia-Pintos, J.K. Nørskov, T. Bligaard, F. Studt, C.T. Campbell, A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 640, 36–44 (2015)CrossRefGoogle Scholar
  54. 54.
    A. Tkatchenko, L. Romaner, O.T. Hofmann, E. Zojer, C. Ambrosch-Draxl, M. Scheffler, Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bull. 35, 435–442 (2011)CrossRefGoogle Scholar
  55. 55.
    S.P. Liu, M. Zhao, W. Gao, Q. Jiang, Mechanistic insights into the unique role of copper in CO2 electroreduction reactions. ChemSusChem 10, 387–393 (2017)CrossRefGoogle Scholar
  56. 56.
    N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258 (2003)CrossRefGoogle Scholar
  57. 57.
    D. Donadio, L.M. Ghiringhelli, L. Delle Site, Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. J. Am. Chem. Soc. 134, 19217–19222 (2012)CrossRefGoogle Scholar
  58. 58.
    B.J. Hinch, L.H. Dubois, First-order corrections in modulated molecular beam desorption experiments. Chem. Phys. Lett. 171, 131–135 (1990)CrossRefGoogle Scholar
  59. 59.
    X.-K. Gu, W.-X. Li, First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111). J. Phys. Chem. C 114, 21539–21547 (2010)CrossRefGoogle Scholar
  60. 60.
    J.B. Hansen, P.E. Højlund Nielsen, Methanol synthesis, in: handbook of heterogeneous catalysis, (Wiley-VCH Verlag GmbH & Co. KGaA, 2008)Google Scholar
  61. 61.
    A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.Institut für ElektrochemieUniversität UlmUlmGermany

Personalised recommendations