Advertisement

Electrocatalysis

, Volume 9, Issue 2, pp 182–188 | Cite as

Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support

  • Andrey LyalinEmail author
  • Kohei Uosaki
  • Tetsuya Taketsugu
Original Article

Abstract

The catalytic activity for the oxygen reduction reaction (ORR) of a hexagonal boron nitride (h-BN) monolayer deposited on a Au(111) surface and decorated by a small planar Au8 cluster has been studied theoretically using density-functional theory. It is shown that gold nanoparticles (Au-NP) deposited on the h-BN/Au(111) surface can provide catalytically active sites for effective ORR at the perimeter interface with the support. Stabilization of oxygen at the perimeter interface between Au-NP and h-BN/Au(111) support promotes OOH* dissociation opening effective 4-electron pathway of ORR with formation of H2O. It is suggested that increase in the perimeter interface area between the supported Au-NP and the surface would result in increase of the ORR activity. Such increase in the perimeter interface area can be achieved by decreasing the size of Au-NP. Our calculations demonstrate the principal ability to functionalize inert materials such as stand-alone h-BN monolayer or Au surface for the ORR and open new way to design effective Pt-free catalysts for fuel cell technology.

Graphical Abstract

?

Keywords

Boron nitride Gold nanocatalysis Oxygen reduction reaction Interface effects 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grants 15K05387 and 16KT0047); the FLAGSHIP2020 program supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan within the priority study5 (Development of new fundamental technologies for high-efficiency energy creation, conversion/storage and use); and the Development of Environmental Technology using Nanotechnology program from MEXT. The computations were performed at the Research Center for Computational Science, Okazaki, and the Numerical Materials Simulator at NIMS, Tsukuba, Japan.

References

  1. 1.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)CrossRefGoogle Scholar
  3. 3.
    H.A. Gasteiger, N.M. Marković, Science. 324, 48 (2009)CrossRefGoogle Scholar
  4. 4.
    N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells. 1, 105 (2001)CrossRefGoogle Scholar
  5. 5.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science. 315, 493 (2007)CrossRefGoogle Scholar
  6. 6.
    M.D. Allendorf, Nature Energy. 1, 16058 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Wu, P. Zelenay, Acc. Chem. Res. 46, 1878 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Chen, J. Kim, S. Sun, S. Chen, J. Phys. Chem. C. 112, 3891 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 10, 638 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Shao, J. Liu, Y. Wang, Y. Lin, J. Mater. Chem. 19, 46 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3, 546 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.J. Wang, D.P. Wilkinson, J. Zhang, Chem. Rev. 111, 7625 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Cao, G.M. Veith, R.E. Diaz, J. Liu, E.A. Stach, R.R. Adzic, P.G. Khalifah, Angew. Chem. Int. Ed. 52, 10753 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Maekawa, A. Ishihara, J.H. Kim, S. Mitsushima, K.i. Ota, Electrochem. Solid-State Lett. 11, B109 (2008)CrossRefGoogle Scholar
  15. 15.
    G. Zhong, H. Wang, H. Yu, F. Peng, Fuel Cells. 13, 387 (2013)CrossRefGoogle Scholar
  16. 16.
    U.I. Kramm, M. Lefévre, N. Larouche, D. Schmeisser, J.P. Dodelet, J. Am. Chem. Soc. 136, 978 (2014)CrossRefGoogle Scholar
  17. 17.
    E.F. Holby, P. Zelenay, Nano Energy. 29, 54 (2016)CrossRefGoogle Scholar
  18. 18.
    J.A. Varnell, E.C.M. Tse, C.E. Schulz, T.T. Fister, R.T. Haasch, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Nat. Comm. 7, 12582 (2016)CrossRefGoogle Scholar
  19. 19.
    M.J. Workman, M. Dzara, C. Ngo, S. Pylypenko, A. Serov, S. McKinney, J. Gordon, P. Atanassov, K. Artyushkova, J. Power. Sources. 348, 30 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Y. Li, M. Li, Chem. Eur. J. 19, 11939 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Hu, D.H.C. Chua, Sci. Rep. 6, 28088 (2016)CrossRefGoogle Scholar
  22. 22.
    R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, J. Phys. Chem. B. 110, 1787 (2006)CrossRefGoogle Scholar
  23. 23.
    J.i. Ozaki, T. Anahara, N. Kimura, A. Oya, Carbon. 44, 3358 (2006)CrossRefGoogle Scholar
  24. 24.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science. 323, 760 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. Int. ed. 49, 2565 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Zhou, H.L. Wang, S. Guo, Chem. Soc. Rev. 45, 1273 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.i. Ozaki, J. Phys. Chem. C. 112, 14706 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.i. Ozaki, S. Miyata, J. Phys. Chem. C. 114, 8933 (2010)CrossRefGoogle Scholar
  29. 29.
    L. Yu, X. Pan, X. Cao, P. Hu, X. Bao, J. Catal. 282, 183 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano. 4, 1321 (2010)CrossRefGoogle Scholar
  31. 31.
    S.F. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J.i. Ozaki, S. Miyata, Phys. Rev. B. 80, 235410 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005)CrossRefGoogle Scholar
  33. 33.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano. 4, 2979 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Gao, A. Lyalin, T. Taketsugu, Catalysts. 1, 18 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Gao, A. Lyalin, T. Taketsugu, J. Phys. Chem. C. 116, 9054 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Gao, A. Lyalin, T. Taketsugu, Int. J. Quantum Chem. 113, 443 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Gao, A. Lyalin, T. Taketsugu, J. Chem. Phys. 138, 034701 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Lyalin, M. Gao, T. Taketsugu, Chem. Rec. 16, 2324 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Phys. Chem. Chem. Phys. 15, 2809 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, J. Phys. Chem. C. 117, 21359 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Top. Catal. 57, 1032 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 10, 5049 (2010)CrossRefGoogle Scholar
  43. 43.
    S. Azevedo, J.R. Kaschny, C.M. de Castilho, F. de Brito Mota, Eur. Phys. J. B. 67, 507 (2009)Google Scholar
  44. 44.
    A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Surf. Sci. 582, 21 (2005)Google Scholar
  45. 45.
    A.B. Preobrajenski, S.A. Krasnikov, A.S. Vinogradov, M.L. Ng, T. Käämbre, A.A. Cafolla, N. Mårtensson, Phys. Rev. B. 77, 085421 (2008)CrossRefGoogle Scholar
  46. 46.
    A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Phys. Rev. B. 70, 165404 (2004)CrossRefGoogle Scholar
  47. 47.
    K. Uosaki, G. Elumalai, H. Noguchi, T. Masuda, A. Lyalin, A. Nakayama, T. Taketsugu, J. Am. Chem. Soc. 136, 6542 (2014)CrossRefGoogle Scholar
  48. 48.
    G. Elumalai, H. Noguchi, K. Uosaki, Phys. Chem. Chem. Phys. 16, 13755 (2014)CrossRefGoogle Scholar
  49. 49.
    K. Uosaki, G. Elumalai, H.C. Dinh, A. Lyalin, T. Taketsugu, H. Noguchi, Sci. Rep. 6, 32217 (2016)CrossRefGoogle Scholar
  50. 50.
    G. Elumalai, H. Noguchi, A. Lyalin, T. Taketsugu, K. Uosaki, Electrochem. Commun. 66, 53 (2016)CrossRefGoogle Scholar
  51. 51.
    M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987)CrossRefGoogle Scholar
  52. 52.
    M. Haruta, Catal. Today. 36, 153 (1997)CrossRefGoogle Scholar
  53. 53.
    M. Haruta, Chem. Rec. 3, 75 (2003)CrossRefGoogle Scholar
  54. 54.
    G.J. Hutchings, M. Brust, H. Schmidbaur, Chem. Soc. Rev. 37, 1759 (2008)CrossRefGoogle Scholar
  55. 55.
    M. Haruta, Faraday Discuss. 152, 11 (2011)CrossRefGoogle Scholar
  56. 56.
    Z. Wu, R.E. Cohen, Phys. Rev. B. 73, 235116 (2006)CrossRefGoogle Scholar
  57. 57.
    F. Tran, R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B. 75, 115131 (2007)CrossRefGoogle Scholar
  58. 58.
    R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B. 78, 045409 (2008)CrossRefGoogle Scholar
  59. 59.
    R. Laskowski, P. Blaha, Phys. Rev. B. 81, 075418 (2010)CrossRefGoogle Scholar
  60. 60.
    M.H. Khan, S.S. Jamali, A. Lyalin, P.J. Molino, L. Jiang, H.K. Liu, T. Taketsugu, Z. Huang, Adv. Mater. 29, 1603937 (2017)CrossRefGoogle Scholar
  61. 61.
    N. Troullier, J.L. Martins, Phys. Rev. B. 43, 1993 (1991)CrossRefGoogle Scholar
  62. 62.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)CrossRefGoogle Scholar
  63. 63.
    D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)CrossRefGoogle Scholar
  64. 64.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter. 14, 2745 (2002)CrossRefGoogle Scholar
  65. 65.
    D. Sánchez-Portal, P. Ordejón, E. Canadell, Struct. Bond. 113, 103 (2004)CrossRefGoogle Scholar
  66. 66.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B. 13, 5188 (1976)CrossRefGoogle Scholar
  67. 67.
    C.S. Yoo, J. Akella, H. Cynn, M. Nicol, Phys. Rev. B. 56, 140 (1997)CrossRefGoogle Scholar
  68. 68.
    R.W.G. Wyckoff, Crystal Structures, vol. 1 (John Wiley & Sons) (1963)Google Scholar
  69. 69.
    R. Bader, Atoms in molecules: a quantum theory (Oxford University Press New York) (1990)Google Scholar
  70. 70.
    G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)CrossRefGoogle Scholar
  71. 71.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B. 108, 17886 (2004)CrossRefGoogle Scholar
  72. 72.
    T. Jacob, Fuel Cells. 06, 159 (2006)CrossRefGoogle Scholar
  73. 73.
    J.A. Keith, G. Jerkiewicz, T. Jacob, Chem. Phys. Chem. 11, 2779 (2010)CrossRefGoogle Scholar
  74. 74.
    J.A. Keith, T. Jacob, Angew. Chem. Int. Ed. 49, 9521 (2010)CrossRefGoogle Scholar
  75. 75.
    B. Hammer, J. Nørskov, Surf. Sci. 343, 211 (1995)CrossRefGoogle Scholar
  76. 76.
    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71 (2000)Google Scholar
  77. 77.
    P. Vassilev, M.T.M. Koper, J. Phys. Chem. C. 111, 2607 (2007)CrossRefGoogle Scholar
  78. 78.
    J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, M. Neurock, J. Phys. Chem. B. 110, 21833 (2006)CrossRefGoogle Scholar
  79. 79.
    K.Y. Yeh, M.J. Janik, J. Comput. Chem. 32, 3399 (2011)CrossRefGoogle Scholar
  80. 80.
    V. Tripković, E. Skúlason, S. Siahrostami, J.K. Nørskov, J. Rossmeisl, Electrochim. Acta. 55, 7975 (2010)CrossRefGoogle Scholar
  81. 81.
    A. Lyalin, T. Taketsugu, J. Phys. Chem. C. 113, 12930 (2009)CrossRefGoogle Scholar
  82. 82.
    A.P. Woodham, A. Fielicke, Angew. Chem. Int. Ed. 53, 6554 (2014)CrossRefGoogle Scholar
  83. 83.
    M. Gao, D. Horita, Y. Ono, A. Lyalin, S. Maeda, T. Taketsugu, J. Phys. Chem. C. 121, 2661 (2017)CrossRefGoogle Scholar
  84. 84.
    H. Häkkinen, B. Yoon, U. Landman, X. Li, H. Zhai, L. Wang, Phys. Chem. A. 107, 6168 (2003)CrossRefGoogle Scholar
  85. 85.
    L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124, 114309 (2006)CrossRefGoogle Scholar
  86. 86.
    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)CrossRefGoogle Scholar
  87. 87.
    H. Häkkinen, U. Landman, J. Am. Chem. Soc. 123, 9704 (2001)CrossRefGoogle Scholar
  88. 88.
    B. Yoon, H. Häkkinen, U. Landman, J. Phys. Chem. A. 107, 4066 (2003)CrossRefGoogle Scholar
  89. 89.
    L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003)CrossRefGoogle Scholar
  90. 90.
    H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)CrossRefGoogle Scholar
  91. 91.
    X. Ding, Z. Li, J. Yang, J.G. Hou, Q. Zhu, J. Chem. Phys. 120, 9594 (2004)CrossRefGoogle Scholar
  92. 92.
    E. Fernández, P. Ordejón, L.C. Balbás, Chem. Phys. Lett. 408, 252 (2005)CrossRefGoogle Scholar
  93. 93.
    R. Coquet, K.L. Howard, D.J. Willock, Chem. Soc. Rev. 37, 2046 (2008)CrossRefGoogle Scholar
  94. 94.
    A. Lyalin, T. Taketsugu, J. Phys. Chem. Lett. 1, 1752 (2010)CrossRefGoogle Scholar
  95. 95.
    J.L. Gland, B.A. Sexton, G.B. Fisher, Surf. Sci. 95, 587 (1980)CrossRefGoogle Scholar
  96. 96.
    C. Campbell, G. Ertl, H. Kuipers, J. Segner, Surf. Sci. 107, 220 (1981)CrossRefGoogle Scholar
  97. 97.
    P.D. Nolan, B.R. Lutz, P.L. Tanaka, J.E. Davis, C.B. Mullins, J. Chem. Phys. 111, 3696 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN)National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations