, Volume 8, Issue 6, pp 605–615 | Cite as

Electrodeposition of Ag Overlayers onto Pt(111): Structural, Electrochemical and Electrocatalytic Properties

  • Ludwig A. KiblerEmail author
  • Khaled A. Soliman
  • Alan Plumer
  • Christopher S. Wildi
  • Eric Bringley
  • Jonathan E. Mueller
  • Timo Jacob
Original Article


Epitaxially grown Ag overlayers have been fabricated by electrochemical deposition onto Pt(111). The electrochemical behaviour of these Ag overlayers has been studied by cyclic voltammetry, and their adsorption properties are significantly influenced by the underlying Pt(111) substrate and markedly different from those of Ag(111). A characteristic voltammetric peak for OH adsorption on pseudomorphic Ag islands has been observed for alkaline solution. A deposition–dissolution hysteresis in the underpotential deposition region for the Ag bilayer suggests exchange processes between subsurface Ag and Pt atoms. Theoretical DFT calculations confirm the stability of a pseudomorphic Ag monolayer. However, it is shown for two and three Ag layers that the formation of sandwich structures is theoretically favoured, i.e. Ag layers tend to be separated by single Pt layers. While Ag displaces hydrogen adsorbed in the underpotential region, the activity of Ag monolayers for the hydrogen evolution reaction (HER) is very close to that of Pt(111). Also, Tafel slopes for HER on the first pseudomorphic Ag monolayer on Pt(111) and for blank Pt(111) are almost identical, whereas thicker overlayers are more Ag-like. It is shown by theoretical calculations for the case of an Ag monolayer on Pt(111) that hydrogen can be adsorbed on the Pt subsurface layer.

Graphical Abstract


Pt(111) Ag(111) Single crystals Ag overlayers Cyclic voltammetry Hydrogen evolution reaction 



JEM gratefully acknowledges financial support from the Alexander von Humboldt foundation. CW gratefully acknowledges financial support provided by ERASMUS and the Student Support Trust. EJB gratefully acknowledges financial support under the IREU exchange program coordinated by the American Chemical Society within the REU program of the National Science Foundation under award number IIA# 1261104.

Financial support by the Deutsche Forschungsgemeinschaft (Research Unit For-1376, Ki 787/6-1 and 6-2) and by the Fonds der Chemischen Industrie is gratefully acknowledged. The authors also acknowledge the computer time supported by the state of Baden-Württemberg through the bwHPC project and the DFG through grant number INST40/467-1 FUGG.


  1. 1.
    J. Lipkowski, P. N. Ross (eds.), Electrocatalysis (Wiley-VCH, New York, 1998)Google Scholar
  2. 2.
    E. Santos, W. Schmickler (eds.), Catalysis in electrochemistry (Wiley-VCH, New York, 2011)Google Scholar
  3. 3.
    M.T.M. Koper, A. Bandarenka, Chem. Soc. Rev. 42, 5210 (2013)CrossRefGoogle Scholar
  4. 4.
    L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Angew. Chem. Int. Ed. 44, 2080 (2005)CrossRefGoogle Scholar
  5. 5.
    H.A. Gasteiger, P.N. Ross, E.J. Cairns, Surf. Sci. 293, 67 (1993)CrossRefGoogle Scholar
  6. 6.
    A.M. El-Aziz, R. Hoyer, L.A. Kibler, Chem. Phys. Chem. 11, 2906 (2010)CrossRefGoogle Scholar
  7. 7.
    L.A. Kibler, M. Kleinert, R. Randler, D.M. Kolb, Surf. Sci. 443, 19 (1999)CrossRefGoogle Scholar
  8. 8.
    M. Takahasi, Y. Hayashi, J. Mizuki, K. Tamura, T. Kondo, H. Naohara, K. Uosaki, Surf. Sci. 461, 213 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Schlapka, M. Lischka, A. Groß, U. Käsberger, P. Jakob, Phys. Rev. Lett. 91, 016101 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, J. Catal. 224, 206 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Mueller, P. Krtil, L.A. Kibler, T. Jacob, Phys. Chem. Chem. Phys. 16, 15029 (2014)CrossRefGoogle Scholar
  12. 12.
    N.M. Markovic, C.A. Lucas, V. Climent, V. Stamenkovic, P.N. Ross, Surf. Sci. 465, 103 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Shao, P. Liu, J. Zhang, R. Adzic, J. Phys. Chem. B 111, 6772 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Steidtner, F. Hernandez, H. Baltruschat, J. Phys. Chem. C 111, 12320 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  16. 16.
    H.E. Hoster, R.J. Behm, in Fuel cell catalysis: a surface science approach, ed. by M. T. M. Koper. (Wiley-VCH, Chichester, 2009)Google Scholar
  17. 17.
    K.F. Domke, X.-Y. Xiao, H. Baltruschat, Phys. Chem. Chem. Phys. 10, 1555 (2008)CrossRefGoogle Scholar
  18. 18.
    K.A. Soliman, L.A. Kibler, D.M. Kolb, Electrocatalysis 3, 170 (2012)CrossRefGoogle Scholar
  19. 19.
    P.J. Feibelman, Phys. Rev. B 35, 2626 (1987)CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 88, 3865 (1996)CrossRefGoogle Scholar
  21. 21.
    M. Fuchs, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999)CrossRefGoogle Scholar
  22. 22.
    D.R. Hamann, Phys. Rev. B 40, 2980 (1989)CrossRefGoogle Scholar
  23. 23.
    F. El Omar, R. Durand, R. Faure, J. Electroanal. Chem. 160, 385 (1984)CrossRefGoogle Scholar
  24. 24.
    R. Durand, R. Faure, D. Aberdam, S. Traore, Electrochim. Acta 34, 1653 (1989)CrossRefGoogle Scholar
  25. 25.
    N. Kimizuka, K. Itaya, Faraday Discuss. 94, 117 (1992)CrossRefGoogle Scholar
  26. 26.
    J.F. Rodriguez, D.L. Taylor, H.D. Abruna, Electrochim. Acta 38, 235 (1993)CrossRefGoogle Scholar
  27. 27.
    P. Zelenay, M. Gamboa-Aldeco, G. Horanyi, A. Wieckowski, J. Electroanal. Chem. 357, 307 (1993)CrossRefGoogle Scholar
  28. 28.
    D.L. Taylor, H.D. Abruna, J. Electrochem. Soc. 140, 3402 (1993)CrossRefGoogle Scholar
  29. 29.
    N.S. Marinkovic, J.X. Wang, J.S. Marinkovic, R.R. Adzic, J. Phys. Chem. B 103, 139 (1999)CrossRefGoogle Scholar
  30. 30.
    Z. Radovic-Hrapovic, G. Jerkiewicz, in Thin Films: Preparation, Characterization, Applications, Chapter 4, ed. by M.P. Soriaga, J. Stickney, L.A. Bottomley, Y-G. Kim (Springer, US, 2002) p. 53Google Scholar
  31. 31.
    K.A. Soliman, L.A. Kibler, Electrochim. Acta 52, 5654 (2007)CrossRefGoogle Scholar
  32. 32.
    B. Braunschweig, W. Daum, Langmuir 25, 11112 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Schweizer, D.M. Kolb, Surf. Sci. 544, 93 (2003)CrossRefGoogle Scholar
  34. 34.
    J. Clavilier, L.H. Klein, A. Vaskevich, A.A. El-Shafei, J. Chem. Soc. Faraday Trans. 92, 3777 (1996)CrossRefGoogle Scholar
  35. 35.
    K. Ait-Mansour, H. Brune, D. Passerone, M. Schmid, W. Xiao, P. Ruffieux, A. Buchsbaum, P. Varga, R. Fasel, O. Gröning, Phys. Rev. B 86, 085404 (2012)CrossRefGoogle Scholar
  36. 36.
    J.S. Spendelow, Q. Xu, J.D. Goodpaster, P.J. Kenis, A. Wieckowski, J. Electrochem. Soc. 154, F238 (2007)CrossRefGoogle Scholar
  37. 37.
    H. Brune, H. Röder, C. Boragno, K. Kern, Phys. Rev. B 49, 2997 (1994)CrossRefGoogle Scholar
  38. 38.
    J.X. Wang, N.S. Marinković, R.R. Adźić, B.M. Ocko, Surf. Sci. 398, L291 (1998)CrossRefGoogle Scholar
  39. 39.
    P. Durussel, P.J. Feschotte, Alloys Compd. 239, 226 (1996)CrossRefGoogle Scholar
  40. 40.
    H. Röder, R. Schuster, H. Brune, K. Kern, Phys. Rev. Lett. 71, 2086 (1993)CrossRefGoogle Scholar
  41. 41.
    A. Vaskevich, M. Rosenblum, E.J. Gileadi, J. Electroanal. Chem. 383, 167 (1995)CrossRefGoogle Scholar
  42. 42.
    Ş.C. Bădescu, P. Salo, T. Ala-Nissila, S.C. Ying, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, Phys. Rev. Lett. 88, 136101 (2002)CrossRefGoogle Scholar
  43. 43.
    Ş.C. Bădescu, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, P. Salo, T. Ala-Nissila, S.C. Ying, Phys. Rev. B 68, 205401 (2003)CrossRefGoogle Scholar
  44. 44.
    H. Hoffmannová, M. Okube, V. Petrykin, P. Krtil, J.E. Mueller, T. Jacob, Langmuir 29, 9046 (2013)CrossRefGoogle Scholar
  45. 45.
    M. Okube, V. Petrykin, J.E. Mueller, D. Fantauzzi, P. Krtil, T. Jacob, Chem. Electro. Chem. 1, 207 (2014)Google Scholar
  46. 46.
    R. Tölle, A. Otto, Surf. Sci. 597, 110 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ludwig A. Kibler
    • 1
    Email author
  • Khaled A. Soliman
    • 2
  • Alan Plumer
    • 3
  • Christopher S. Wildi
    • 4
  • Eric Bringley
    • 5
  • Jonathan E. Mueller
    • 6
  • Timo Jacob
    • 1
  1. 1.Institut für ElektrochemieUniversität UlmUlmGermany
  2. 2.Physical Chemistry DepartmentNational Research CentreCairoEgypt
  3. 3.Ecole Nationale Supérieure d’Ingénieurs de CaenCaenFrance
  4. 4.Department of ChemistryUniversity of AberdeenAberdeenUK
  5. 5.University of CambridgeCambridgeUK
  6. 6.Volkswagen AktiengesellschaftWolfsburgGermany

Personalised recommendations