Advertisement

Electrocatalysis

, Volume 8, Issue 6, pp 530–539 | Cite as

Influence of Step and Island Edges on Local Adsorption Properties: Hydrogen Adsorption on Pt Monolayer Island Modified Ru(0001) Electrodes

  • Sung Sakong
  • Julia M. Fischer
  • David Mahlberg
  • R. Jürgen Behm
  • Axel GroßEmail author
Original Article

Abstract

The influence of steps and island edges on the local electronic structure of a (bi-)metallic single crystalline electrode surface and on the local, site-specific adsorption energy of adsorbed species, the so-called structural effects, was studied by periodic density functional theory based calculations, focusing on longer-range effects. Using hydrogen adsorption energies as a local probe, calculations were performed both for partly Pt monolayer covered planar Ru(0001) surfaces and for a stepped Ru(\(10\bar {19}\)) surface decorated with a row of Pt atoms. The calculations demonstrate that the steps/island edges affect not only the nearest neighbor adsorption sites but also more distant ones with the extent depending on the particular structure. This longer-range effect is in excellent agreement with recent temperature-programmed desorption and spectroscopy experiments (Hartmann et al. Phys. Chem. Chem. Phys. 14, 10919, 2012). For the interaction of water molecules with partly Pt monolayer covered Ru(0001), similar trends as in the hydrogen adsorption have been found. In addition, hydrogen adsorption energies as a function of coverage have been used to derive the hydrogen coverage as a function of the electrode potential, exhibiting a broad range of stable hydrogen adsorption structures.

Graphical Abstract

Local adsorption properties of Pt monolayer island modified Ru(0001) electrodes are studied by first-principles calculations

Keywords

Adsorption Step Bimetallic catalysts Site selective adsorption Density functional calculations PtRu Hydrogen Water 

Notes

Acknowledgments

This research has been supported by the German Research Foundation (DFG) through contract GR 1503/22-2 and BE 1201/18-2 within the DFG Research Unit FOR 1376. Computer time has been provided by the state of Baden-Württemberg through the bwHPC project and the Germany Research Foundation (DFG) through grant number INST 40/467-1 FUGG.

References

  1. 1.
    K. Christmann, G. Ertl, Interaction of hydrogen with Pt(111): the role of atomic steps. Surf. Sci. 60, 365 (1976). doi: 10.1016/0039-6028(76)90322-8 CrossRefGoogle Scholar
  2. 2.
    B. Poelsema, G. Mechtersheimer, G. Comsa, The interaction of hydrogen with platinum(s)9(111) ×(111) studied with helium beam diffraction. Surf. Sci. 111, 519 (1981). doi: 10.1016/0039-6028(81)90406-4 CrossRefGoogle Scholar
  3. 3.
    B. Hammer, O. H. Nielsen, J.K. Nørskov, Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal. Lett. 46, 31 (1997)CrossRefGoogle Scholar
  4. 4.
    P. Gambardella, Z. Sljivancanin, B. Hammer, M. Blanc, K. Kuhnke, K. Kern, Oxygen dissociation at Pt steps . Phys. Rev. Lett. 87, 056103 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Groß, Adsorption at nanostructured surfaces from first principles. J. Comput. Theor. Nanosci. 5, 894 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211 (1995)CrossRefGoogle Scholar
  7. 7.
    H.S. Taylor, A theory of the catalytic surface. Proc. R. Soc. Lond. A. 108, 105 (1925). doi: 10.1098/rspa.1925.0061 CrossRefGoogle Scholar
  8. 8.
    S. Dahl, A. Logadottir, R.C. Egeberg, J.H. Larsen, I. Chorkendorff, E. Törnqvist, J.K. Nørskov, Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814 (1999)CrossRefGoogle Scholar
  9. 9.
    L. Jacobse, A. den Dunnen, L.B.F. Juurlink, The molecular dynamics of adsorption and dissociation of O2 on Pt(553). J. Chem. Phys. 143, 014703 (2015). doi: 10.1063/1.4923006 CrossRefGoogle Scholar
  10. 10.
    C. Badan, R.G. Farber, Y. Heyrich, M.T.M. Koper, D.R. Killelea, L.B.F. Juurlink, Steptype selective oxidation of platinum surfaces. J. Phys. Chem. C. 120, 22927 (2016). doi: 10.1021/acs.jpcc.6b05482 CrossRefGoogle Scholar
  11. 11.
    A.M. Gómez-Marín, J.M. Feliu, Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal. Today. 244, 172 (2015). doi: 10.1016/j.cattod.2014.05.009 CrossRefGoogle Scholar
  12. 12.
    H. Hartmann, T. Diemant, J. Bansmann, R.J. Behm, Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces. Phys. Chem. Chem. Phys. 14, 10919 (2012). doi: 10.1039/C2CP41434A CrossRefGoogle Scholar
  13. 13.
    M.F. Juárez, E. Santos, Electronic anisotropy at vicinal Ag(11n) surfaces: work function changes induced by steps and hydrogen adsorption. J. Phys. Chem. C. 117(9), 4606 (2013). doi: 10.1021/jp311531u CrossRefGoogle Scholar
  14. 14.
    M.F. Juárez, E. Santos, Electronic anisotropy at vicinal Ag(11n) surfaces: energetics of hydrogen adsorption. J. Phys. Chem. C. 120, 2109 (2016). doi: 10.1021/acs.jpcc.5b08041 CrossRefGoogle Scholar
  15. 15.
    A. Ruderman, M. Juarez, L. Avalle, G. Beltramo, M. Giesen, E. Santos, First insights of the electrocatalytical properties of stepped silver electrodes for the hydrogen evolution reaction. Electrochem. Commun. 34, 235 (2013). doi: 10.1016/j.elecom.2013.06.023 CrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996)CrossRefGoogle Scholar
  17. 17.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994)CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  19. 19.
    S. Schnur, A. Groß, Challenges in the first-principles description of reactions in electrocatalysis. Catal. Today. 165, 129 (2011). doi: 10.1016/j.cattod.2010.11.071 CrossRefGoogle Scholar
  20. 20.
    A. Groß, Reactivity of bimetallic systems studied from first principles. Top. Catal. 37, 29 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Greeley, J.K. Nørskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, Hydrogen evolution over bimetallic systems - understanding the trends. Chem. Phys. Chem. 7, 1032 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Sakong, C. Mosch, A. Groß, CO adsorption on Cu-Pd alloy surfaces: ligand versus ensemble effects. Phys. Chem. Chem. Phys. 9, 2216 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Groß, Tailoring the reactivity of bimetallic overlayer and surface alloy systems. J. Phys. Condens. Matter. 21, 084205 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Schlapka, M. Lischka, A. Groß, U. Käsberger, P. Jakob, Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(001). Phys. Rev. Lett. 91, 016101 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Lischka, C. Mosch, A. Groß, Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochim. Acta. 52, 2219 (2007). doi: 10.1016/j.electacta.2006.03.113 CrossRefGoogle Scholar
  26. 26.
    P. Gambardella, M. Blanc, H. Brune, K. Kuhnke, K. Kern, One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B. 61, 2254 (2000). doi: 10.1103/PhysRevB.61.2254 CrossRefGoogle Scholar
  27. 27.
    A. Groß. Theoretical surface science—a microscopic perspective, 2nd edn (Springer, Berlin, 2009)Google Scholar
  28. 28.
    A. Roudgar, A. Groß, Local reactivity of thin Pd overlayers on Au single crystals. J. Electroanal. Chem. 548, 121 (2003)CrossRefGoogle Scholar
  29. 29.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886 (2004). doi: 10.1021/jp047349j CrossRefGoogle Scholar
  30. 30.
    S. Sakong, M. Naderian, K. Mathew, R.G. Hennig, A. Groß, Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J. Chem. Phys. 142, 234107 (2015). doi: 10.1063/1.4922615 CrossRefGoogle Scholar
  31. 31.
    H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Temperature-dependent methanol electro-oxidation on wellcharacterized Pt-Ru alloys. J. Electrochem. Soc. 141, 1795 (1994). doi: 10.1149/1.2055007 CrossRefGoogle Scholar
  32. 32.
    H.E. Hoster, T. Iwasita, Baumgärtner, W. Vielstich, Pt-Ru model catalysts for anodic methanol oxidation: inuence of structure and composition on the reactivity. Phys. Chem. Chem. Phys. 3, 337 (2001)CrossRefGoogle Scholar
  33. 33.
    R. Reichert, J. Schnaidt, Z. Jusys, R.J. Behm, The inuence of reactive side products on the electrooxidation of methanol—a combined in situ infrared spectroscopy and online mass spectrometry study. Phys. Chem. Chem. Phys. 16, 13780 (2014). doi: 10.1039/C4CP01229A CrossRefGoogle Scholar
  34. 34.
    S. Sakong, A. Groß, The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal. 6, 5575 (2016). doi: 10.1021/acscatal.6b00931 CrossRefGoogle Scholar
  35. 35.
    J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  36. 36.
    R.A. Sidik, A.B. Anderson, Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanal. Chem. 528, 69 (2002)CrossRefGoogle Scholar
  37. 37.
    J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B. 108, 4127 (2004)CrossRefGoogle Scholar
  38. 38.
    S. Brimaud, A.K. Engstfeld, O.B. Alves, H.E. Hoster, R.J. Behm, Oxygen reduction on structurally well defined, bimetallic PtRu surfaces: monolayer PtxRu1-x/Ru(0001) surface alloys versus Pt film covered Ru(0001). Top. Catal. 57, 222 (2014). doi: 10.1007/s11244-013-0177-0 CrossRefGoogle Scholar
  39. 39.
    F. Gossenberger, T. Roman, A. Groß, Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim. Acta. 216, 152 (2016). doi: 10.1016/j.electacta.2016.08.117
  40. 40.
    A. Roudgar, A. Groß, Water bilayer on the Pd/Au(111) overlayer system: coadsorption and electric field effects. Chem. Phys. Lett. 409, 157 (2005)Google Scholar
  41. 41.
    A. Roudgar, A. Groß, Hydrogen adsorption energies on bimetallic overlayer systems at the solid-vacuum and the solid-liquid interface. Surf. Sci. 597, 42 (2005)CrossRefGoogle Scholar
  42. 42.
    J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, M. Neurock, Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B. 110, 21833 (2006). doi: 10.1021/jp0631735 CrossRefGoogle Scholar
  43. 43.
    N.M. Markovic, P.N. Ross Jr., Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117 (2002)CrossRefGoogle Scholar
  44. 44.
    H.E. Hoster, O.B. Alves, M.T.M. Koper, Tuning adsorption via strain and vertical ligand effects. ChemPhysChem. 11, 1518 (2010). doi: 10.1002/cphc.200900500 CrossRefGoogle Scholar
  45. 45.
    J.M. Fischer, D. Mahlberg, T. Roman, A. Groß, Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proc. R. Soc. A. 472, 20160618 (2016). doi: 10.1098/rspa.2016.0618 CrossRefGoogle Scholar
  46. 46.
    X. Lin, A. Groß, First-principles study of the water structure on flat and stepped gold surfaces. Surf. Sci. 606, 886 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Groß, F. Gossenberger, X. Lin, M. Naderian, S. Sakong, T. Roman, Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J. Electrochem. Soc. 161, E3015 (2014). doi: 10.1149/2.003408jes CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sung Sakong
    • 1
  • Julia M. Fischer
    • 2
  • David Mahlberg
    • 1
  • R. Jürgen Behm
    • 3
  • Axel Groß
    • 1
    Email author
  1. 1.Institute of Theoretical ChemistryUlm UniversityUlmGermany
  2. 2.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaAustralia
  3. 3.Institute of Surface Chemistry and CatalysisUlm UniversityUlmGermany

Personalised recommendations