, Volume 8, Issue 1, pp 74–85 | Cite as

Effect of Protonated Amine Molecules on the Oxygen Reduction Reaction on Metal-Nitrogen-Carbon-Based Catalysts

  • M. P. Karthikayini
  • Guanxiong Wang
  • P. A. Bhobe
  • Anjaiah Sheelam
  • Vijay K. Ramani
  • K. R. Priolkar
  • R. K. RamanEmail author
Original Research


Non-precious metal electrocatalysts based on pyrolyzed metal, nitrogen, and carbon (MNC) are viewed as an inexpensive replacement for platinum-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. One of the enduring issues in the field of MNC catalysis is identifying the exact active structure responsible for the ORR. Many ORR active sites have been proposed recently, such as transition metal coordinated to (i) four pyrrolic nitrogens, (ii) four pyridinic nitrogens, and (iii) four pyridinic nitrogens interacting with one protonated nitrogen; among these, the latter is viewed as the most promising active site for the ORR. In this study, we have synthesized a manganese-based MNC catalyst (MnNx/C). EPR and X-ray absorption fine structure (XAFS) analysis indicated the presence of four nitrogens around the Mn(II) ion. The ORR performance of an MnNx/C catalyst was recorded in the presence of the disodium salt of ethylenediaminetetraacetic acid (EDTA-Na2), ethylene diamine (ED), and combination of ED and acetic acid (AA). The presence of EDTA-Na2 and ED + AA in the electrolyte solution maximizes the availability of protonated amine-N around the catalyst. As a consequence, we noticed significant improvement in the ORR kinetics in H2SO4 (10−4, 10−6 N) and NaOH (10−6 to 10−2 N) electrolyte solutions. The improvement in the onset potential for the ORR ranged between 80 and 160 mV as the pH was changed from 4 to 12. Based on XAFS data and ORR polarization in the presence of EDTA-Na2 and ED + AA, we believe that the MnN4 moiety interacting with the protonated amine is the most probable active site contributing to ORR activity in the H2SO4 (10−4, 10−6 N) and NaOH (10−6 to 10−2 N) electrolyte solutions.

Graphical Abstract

Hypothesized ORR active site in presence of the protonated amine.


Non-precious metal catalysts Oxygen reduction reaction Protonated amine Ethylenediamine Acetic acid 



We acknowledge the funding from the Department of Science and Technology, India, under the grant number SB/FT/CS-171/2013.

Supplementary material

12678_2016_341_MOESM1_ESM.docx (428 kb)
ESM 1 (DOCX 428 kb)


  1. 1.
    M.A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 160, A1759 (2013)CrossRefGoogle Scholar
  2. 2.
    E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nat. Commun. 2, 416 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Aho, M. Antonietti, S. Arndt, M. Behrens, E. Bill, A. Brandner, G. Centi, P. Claus, N. Cox, S. DeBeer, Chemical energy storage, (Walter de Gruyter, 2012)Google Scholar
  4. 4.
    W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells: Fundamentals Technology and Applications, vol. 4, Fuel Cell Technology and Applications, (Wiley, 2003)Google Scholar
  5. 5.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332, 443 (2011)CrossRefGoogle Scholar
  6. 6.
    J.Y. Cheon, T. Kim, Y. Choi, H.Y. Jeong, M.G. Kim, Y.J. Sa, J. Kim, Z. Lee, T.-H. Yang, K. Kwon, O. Terasaki, G.-G. Park, R.R. Adzic, S.H. Joo, Sci. Rep. 3, 2715 (2013)CrossRefGoogle Scholar
  7. 7.
    V. Goellner, C. Baldizzone, A. Schuppert, M.T. Sougrati, K. Mayrhofer, F. Jaouen, Phys. Chem. Chem. Phys. 16, 18454 (2014)CrossRefGoogle Scholar
  8. 8.
    V. Nallathambi, J.-W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, J. Power Sources 183, 34 (2008)CrossRefGoogle Scholar
  9. 9.
    M.S. Thorum, J.M. Hankett, A.A. Gewirth, J. Phys. Chem. Lett. 2, 295 (2011)CrossRefGoogle Scholar
  10. 10.
    K.M. Palanivelu, V. Prabhakaran, V.K. Ramani, K. Ramanujam, J. Electrochem. Soc. 162, F475 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M-T. Sougrati, F. Jaouen, S. Mukerjee, Nat. Commun. 6, (2015)Google Scholar
  12. 12.
    U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, Phys. Chem. Chem. Phys. 14, 11673 (2012)CrossRefGoogle Scholar
  13. 13.
    N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J-P. Paraknowitsch, P. Strasser, Nat Commun. 6, (2015)Google Scholar
  14. 14.
    G. Roelfes, V. Vrajmasu, K. Chen, R.Y.N. Ho, J.-U. Rohde, C. Zondervan, R.M. la Crois, E.P. Schudde, M. Lutz, A.L. Spek, R. Hage, B.L. Feringa, E. Münck, L. Que, Inorg. Chem. 42, 2639 (2003)Google Scholar
  15. 15.
    M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 324, 71 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Leonard, V. Nallathambi, S.C. Barton, J. Electrochem. Soc. 160, F788 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, S.C. Barton, J. Mater. Chem. A 3, 21494 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Kothandaraman, V. Nallathambi, K. Artyushkova, S.C. Barton, Appl. Catal. B Environ. 92, 209 (2009)CrossRefGoogle Scholar
  19. 19.
    á. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Sarapuu, L. Samolberg, K. Kreek, M. Koel, L. Matisen, K. Tammeveski, J. Electroanal. Chem. 746, 9 (2015)CrossRefGoogle Scholar
  21. 21.
    U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 495, 134 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Lefèvre, J.P. Dodelet, P. Bertrand, J. Phys. Chem. B 106, 8705 (2002)CrossRefGoogle Scholar
  23. 23.
    U.I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, J.-P. Dodelet, J. Am. Chem. Soc. 136, 978 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Kropp, A.E. King, M.M. Khusniyarov, F.W. Heinemann, K.M. Lancaster, S. DeBeer, E. Bill, K. Meyer, J. Am. Chem. Soc. 134, 15538 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, T.F. Jaramillo, J. Am. Chem. Soc. 135, 8525 (2013)CrossRefGoogle Scholar
  26. 26.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)CrossRefGoogle Scholar
  27. 27.
    M. Watanabe, H. Igarashi, K. Yosioka, Electrochim. Acta 40, 329 (1995)CrossRefGoogle Scholar
  28. 28.
    R. Yang, K. Stevens, J.R. Dahn, J. Electrochem. Soc. 155, B79 (2008)CrossRefGoogle Scholar
  29. 29.
    H.-J. Zhang, Q.-Z. Jiang, L. Sun, X. Yuan, Z. Shao, Z.-F. Ma, Int. J. Hydrogen Energy 35, 8295 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Domínguez, F.J. Pérez-Alonso, M. Abdel Salam, G. de la Fuente JL, S.A. Al-Thabaiti, S.N. Basahel, M.A. Peña, J.L.G. Fierro, S. Rojas, Int. J. Hydrogen Energy 39, 5309 (2014)CrossRefGoogle Scholar
  31. 31.
    S. L. Reddy, G. S. Reddy, T. Endo, Electronic (Absorption) Spectra of 3d Transition Metal Complexes, (INTECH Open Access Publisher, 2012)Google Scholar
  32. 32.
    W. Gebicki LA, M. Palczewska, M. Zajac, J. Szczytko, T. Szyszko, S. Podsiadlo, A. Twardowski, Magnetic and structural properties of GaMnN mixed crystals (The Electrochemical Society Proceedings Series, Washington, DC, 2001)Google Scholar
  33. 33.
    A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14, 937 (2015)CrossRefGoogle Scholar
  34. 34.
    M.P. Karthikayini, T. Thirupathi, G. Wang, V.K. Ramani, R.K. Raman, J. Electrochem. Soc. 163, F539 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. P. Karthikayini
    • 1
  • Guanxiong Wang
    • 2
  • P. A. Bhobe
    • 3
  • Anjaiah Sheelam
    • 1
  • Vijay K. Ramani
    • 2
  • K. R. Priolkar
    • 4
  • R. K. Raman
    • 1
    Email author
  1. 1.Department of ChemistryIIT MadrasChennaiIndia
  2. 2.Department of Chemical and Biological EngineeringIllinois Institute of TechnologyChicagoUSA
  3. 3.School of Basic SciencesIndian Institute of Technology IndoreIndoreIndia
  4. 4.Department of PhysicsGoa UniversityTaleigao PlateauIndia

Personalised recommendations