Advertisement

Electrocatalysis

, Volume 8, Issue 1, pp 51–58 | Cite as

Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity

  • Gwenn CognardEmail author
  • Guillaume Ozouf
  • Christian Beauger
  • Ignacio Jiménez-Morales
  • Sara Cavaliere
  • Deborah Jones
  • Jacques Rozière
  • Marian Chatenet
  • Frédéric MaillardEmail author
Original Research

Abstract

Two synthesis routes were used to design high surface area niobium-doped tin dioxide (Nb-doped SnO2, NTO) nanostructures with either loose-tube (fibre-in-tube) morphology using electrospinning or aerogel morphology using a sol-gel process. A higher specific surface area but a lower apparent electrical conductivity was obtained on the NTO aerogel compared to the loose tubes. The NTO aerogels and loose tubes and two reference materials (undoped SnO2 aerogel and Vulcan XC72) were platinized with a single colloidal suspension and tested as oxygen reduction reaction (ORR) electrocatalysts for proton-exchange membrane fuel cell (PEMFC) applications. The specific surface area of the supports strongly influenced the mass fraction of deposited Pt nanoparticles (NPs) and their degree of agglomeration. The apparent electrical conductivity of the supports determined the electrochemically active surface area (ECSA) and the catalytic activity of the Pt NPs for the ORR. Based on these findings, electrospinning appears to be the preferred route to synthesize NTO supports for PEMFC cathode application.

Graphical Abstract

On top : SEM images of the synthesized supports : 5.0 at.% Nb-doped SnO2 aerogel (NTO-AG) and loose tubes (NTO-LT) - At the bottom : specific activity (SA0.90) and mass activity (MA0.90) of the synthesized electrocatalysts for the oxygen reduction reaction (ORR) determined at E = 0.90 V vs. RHE as a function of the conductivity of the supports

Keywords

Niobium-doped tin dioxide (Nb-doped SnO2, NTO) Platinum Aerogel Loose tubes Oxygen reduction reaction Proton exchange membrane fuel cell 

Notes

Acknowledgments

The authors gratefully acknowledge Pierre Ilbizian for supercritical drying and Suzanne Jacomet for SEM observations of the TO and NTO aerogels.

Compliance with Ethical Standards

Funding

The authors acknowledge financial support from the French National Research Agency through the SURICAT project (grant number ANR-12-PRGE-007) and the European Union’s Seventh Framework Program for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 325239 (FCH-JU project Nano-CAT) as well as Capenergies and Tenerrdis. MC thanks the French IUF for its support. SC acknowledges the European Research Council under the European Union’s Seventh Framework Programme (FP/2007 − 2013)/ERC Grant Agreement No. 306682.

Conflict of interest

The authors declare that they have no conflict of interest (financial or non-financial).

Supplementary material

12678_2016_340_MOESM1_ESM.docx (170 kb)
ESM 1 (DOCX 169 kb)

References

  1. 1.
    A. Lamibrac, G. Maranzana, O. Lottin, J. Dillet, J. Mainka, S. Didierjean, A. Thomas, C. Moyne, J Power Sources 196, 9451 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Appl Catal B Environ 138–139, 416 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caqué, Wiley Interdiscip Rev Energy Environ 3, 540 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal 5, 2184 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, ACS Catal 4, 2258 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J Power Sources 176, 444 (2008)CrossRefGoogle Scholar
  7. 7.
    F. Maillard, A. Bonnefont, F. Micoud, Electrochem Commun 13, 1109 (2011)CrossRefGoogle Scholar
  8. 8.
    N. Linse, L. Gubler, G.G. Scherer, A. Wokaun, Electrochim Acta 56, 7541 (2011)CrossRefGoogle Scholar
  9. 9.
    L.M. Roen, C.H. Paik, T.D. Jarvi, Electrochem Solid-State Lett 7, A19 (2004)CrossRefGoogle Scholar
  10. 10.
    S.J. Tauster, S.C. Fung, R.L. Garten, J Am Chem Soc 100, 170 (1978)CrossRefGoogle Scholar
  11. 11.
    S.J. Tauster, S.C. Fung, Occur among Bin Oxides Groups IIA-VB 55, 29 (1978)Google Scholar
  12. 12.
    S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley, Science 211, 1121 (1981)CrossRefGoogle Scholar
  13. 13.
    M.G. Sanchez, J.L. Gazquez, J Catal 104, 120 (1987)CrossRefGoogle Scholar
  14. 14.
    U. Diebold, Surf Sci Rep 48, 53 (2003)CrossRefGoogle Scholar
  15. 15.
    Q. Fu, T. Wagner, S. Olliges, H.D. Carstanjen, J Phys Chem B 109, 944 (2005)CrossRefGoogle Scholar
  16. 16.
    Q. Fu, T. Wagner, Surf Sci Rep 62, 431 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Electrochem Commun 11, 651 (2009)CrossRefGoogle Scholar
  18. 18.
    F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Phys Chem Chem Phys 5, 1182–1193 (2010)CrossRefGoogle Scholar
  19. 19.
    V.A. O’Shea, M.C.A. Galván, A.E.P. Prats, J.M. Campos-Martin, J.L.G. Fierro, Chem Commun (Camb) 47, 7131 (2011)Google Scholar
  20. 20.
    G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto, L. Dubau, R. Chattot, M. Chatenet, F. Maillard, Appl Catal B Environ 201, 381 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Takabatake, Z. Noda, S.M. Lyth, A. Hayashi, K. Sasaki, Int J Hydrogen Energy 39, 5074 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi, Y. Shiratori, K. Ito, K. Sasaki, J Electrochem Soc 158, B1270 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Senoo, K. Taniguchi, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Electrochem Commun 51, 37 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Masao, S. Noda, F. Takasaki, K. Ito, K. Sasaki, Electrochem Solid-State Lett 12, B119 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Cavaliere, S. Subianto, I. Savych, M. Tillard, D.J. Jones, J. Rozière, J Phys Chem C 117, 18298 (2013)CrossRefGoogle Scholar
  26. 26.
    E. Fabbri, A. Rabis, R. Kötz, T.J. Schmidt, Phys Chem Chem Phys 16, 13672 (2014)CrossRefGoogle Scholar
  27. 27.
    K. Kakinuma, Y. Chino, Y. Senoo, M. Uchida, T. Kamino, H. Uchida, S. Deki, M. Watanabe, Electrochim Acta 110, 316 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, RSC Adv 4, 32180 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Suffner, S. Kaserer, H. Hahn, C. Roth, F. Ettingshausen, Adv Energy Mater 1, 648 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Sudan Saha, R. Li, M. Cai, X. Sun, Electrochem Solid-State Lett 10, B130 (2007)CrossRefGoogle Scholar
  31. 31.
    Y. Fan, J. Liu, H. Lu, P. Huang, D. Xu, Electrochim Acta 76, 475 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J Power Sources 196, 4499 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim Acta 92, 468 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Ozouf, C. Beauger, J Mater Sci 51, 5305 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Batzill, U. Diebold, Prog Surf Sci 79, 47 (2005)CrossRefGoogle Scholar
  36. 36.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D.L. Yang, M.L. Perry, T.D. Jarvi, Electrochem Solid State Lett 8, A273 (2005)CrossRefGoogle Scholar
  37. 37.
    L. Dubau, M. Lopez-Haro, L. Castanheira, J. Durst, M. Chatenet, P. Bayle-Guillemaud, L. Guétaz, N. Caqué, E. Rossinot, F. Maillard, Appl Catal B Environ 142–143, 801 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Dubau, L. Castanheira, M. Chatenet, F. Maillard, J. Dillet, G. Maranzana, S. Abbou, O. Lottin, G. De Moor, A. El Kaddouri, C. Bas, L. Flandin, E. Rossinot, N. Caqué, Int J Hydrogen Energy 36, 21902-21914 (2014)Google Scholar
  39. 39.
    L. Castanheira, L. Dubau, F. Maillard, Electrocatalysis 5, 125 (2014)CrossRefGoogle Scholar
  40. 40.
    L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, Electrochim Acta 110, 273 (2013)CrossRefGoogle Scholar
  41. 41.
    Z. Zhao, L. Castanheira, L. Dubau, G. Berthomé, A. Crisci, F. Maillard, J Power Sources 230, 236 (2013)CrossRefGoogle Scholar
  42. 42.
    A.F. Mayadas, M. Shatzkes, Phys Rev B 1, 1382 (1970)CrossRefGoogle Scholar
  43. 43.
    Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, ACS Nano 3, 1373 (2009)CrossRefGoogle Scholar
  44. 44.
    I. Savych, S. Subianto, Y. Nabil, S. Cavaliere, D. Jones, J. Rozière, Phys Chem Chem Phys 17, 16970 (2015)CrossRefGoogle Scholar
  45. 45.
    I. Savych, J. Bernard D’Arbigny, S. Subianto, S. Cavaliere, D.J. Jones, J. Rozière, J Power Sources 257, 147 (2014)CrossRefGoogle Scholar
  46. 46.
    L.J. Van der Pauw, Philips Res Reports 13, 1 (1958)Google Scholar
  47. 47.
    S. Brunauer, P.H. Emmett, E. Teller, J Am Chem Soc 60, 309 (1938)CrossRefGoogle Scholar
  48. 48.
    S. Cavaliere, I. Jiménez-Morales, G. Ercolano, I. Savych, D. Jones, J. Rozière, Chem Electro Chem (2015). doi: 10.1002/celc.201500330 Google Scholar
  49. 49.
    J.F. Boyle, K.A. Jones, J Electron Mater 6, 717 (1977)CrossRefGoogle Scholar
  50. 50.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens Actuators, B 3, 147 (1991)CrossRefGoogle Scholar
  51. 51.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, J Mater Sci 27, 963 (1992)CrossRefGoogle Scholar
  52. 52.
    A.B. Suryamas, G.M. Anilkumar, S. Sago, T. Ogi, K. Okuyama, Catal Commun 33, 11 (2013)CrossRefGoogle Scholar
  53. 53.
    D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, Appl Surf Sci 179, 301 (2001)CrossRefGoogle Scholar
  54. 54.
    D. Dobler, S. Oswald, J. Werner, W. Arabczyk, G. Behr, K. Wetzig, Chem Phys 286, 375 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Oswald, G. Behr, D. Dobler, J. Werner, K. Wetzig, W. Arabczyk, Anal Bioanal Chem 378, 411 (2004)CrossRefGoogle Scholar
  56. 56.
    Y. Cross, D.R. Pyke, J Catal 58, 61 (1979)CrossRefGoogle Scholar
  57. 57.
    Y. Boudeville, F. Figueras, M. Forissier, J.L. Portefaix, J.C. Vedrine, J Catal 58, 52 (1979)CrossRefGoogle Scholar
  58. 58.
    E. Oakton, J. Tillier, G. Siddiqi, Z. Mickovic, O. Sereda, A. Fedorov, C. Copéret, New J Chem 40, 2655 (2016)CrossRefGoogle Scholar
  59. 59.
    M.A. Aegerter, Sol Energy Mater Sol Cells 68, 401 (2001)CrossRefGoogle Scholar
  60. 60.
    F. Maillard, P. Simonov, E.R. Savinova, in Carbon Mater. Catal, ed. by P. Serp, J.L. Figueiredo (John Wiley & Sons, Inc, New York, 2009), pp. 429–480Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University Grenoble Alpes, LEPMIGrenobleFrance
  2. 2.CNRS, LEPMIGrenobleFrance
  3. 3.MINES ParisTechPSL Research University PERSEE - Centre procédés, énergies renouvelables et systèmes énergétiquesSophia Antipolis CedexFrance
  4. 4.Institut Charles Gerhardt Montpellier, Agrégats Interfaces Matériaux pour l’Energie, Université de MontpellierMontpellierFrance
  5. 5.French University InstituteParisFrance

Personalised recommendations