, Volume 7, Issue 4, pp 280–286 | Cite as

Investigation of Electrochemical Properties of Model Lanthanum Strontium Cobalt Ferrite-Based Cathodes for Proton Ceramic Fuel Cells

  • Chung-Yul YooEmail author
  • Dae Sik Yun
  • Sun-Young Park
  • Jaeku Park
  • Jong Hoon Joo
  • Haein Park
  • Minseok Kwak
  • Ji Haeng Yu
Original Research


The electrochemical properties of La0.6Sr0.4Co0.2Fe0.8O3-δ-based cathodes are studied as model electrodes for proton ceramic fuel cells. The electrochemical performance of symmetric cells with porous cathodes (La0.6Sr0.4Co0.2Fe0.8O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ–BaCe0.9Y0.1O3-δ, and La0.6Sr0.4Co0.2Fe0.8O3-δ–BaZr0.8Y0.2O3-δ), investigated as a function of oxygen and water partial pressures, follows the order La0.6Sr0.4Co0.2Fe0.8O3-δ–BaCe0.9Y0.1O3-δ ≥ La0.6Sr0.4Co0.2Fe0.8O3-δ >> La0.6Sr0.4Co0.2Fe0.8O3-δ–BaZr0.8Y0.2O3-δ. The results indicate that the cathode performance of La0.6Sr0.4Co0.2Fe0.8O3-δ–BaCe0.9Y0.1O3-δ is enhanced mainly due to the extension of the effective triple phase boundary, whereas that of La0.6Sr0.4Co0.2Fe0.8O3-δ–BaZr0.8Y0.2O3-δ is lowered due to the poor proton conductivity along the percolated BaZr0.8Y0.2O3-δ particles. From the observed oxygen partial pressure dependence, the rate-determining step of the above cathode polarization reaction is principally ascribed to the oxygen reduction reaction.

Graphical abstract

Schematics of the cathode reaction mechanism at the surface of the LSCF, LSCF-BCY, and LSCFBZY cathodes


Proton ceramic fuel cell Composite cathode Proton-conducting phase Electrochemical reaction 



This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (B6-2456-01). This research was also supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015M3D3A1A01064928). Jong Hyun Park (Chungnam National University) and Hyejin Yu (Pukyong National University) are gratefully acknowledged for experimental supports and fruitful discussions.


  1. 1.
    H. Iwahara, Solid State Ionics 77, 289 (1995)CrossRefGoogle Scholar
  2. 2.
    N. Bonanos, Solid State Ionics 79, 161 (1995)CrossRefGoogle Scholar
  3. 3.
    L. Bi, E. Traversa, J. Mater. Res. 29, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Bi, S. Boulfrad, E. Traversa, Chem. Soc. Rev. 43, 8255 (2014)CrossRefGoogle Scholar
  5. 5.
    F. He, T. Wu, R. Peng, C. Xia, J. Power Sources 194, 263 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, J. Ahn, J. Power Sources 180, 15 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Lin, R. Ran, C. Zhang, R. Cai, Z. Shao, J. Phys. Chem. A 114, 3764 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.C. Grenier, M. Marrony, Electrochim. Acta 55, 5847 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Grimaud, F. Mauvy, J.M. Bassat, S. Fourcade, L. Rocheron, M. Marrony, J.C. Grenier, J. Electrochem. Soc. 159, B683 (2012)CrossRefGoogle Scholar
  10. 10.
    P. Batocchi, F. Mauvy, S. Fourcade, M. Parco, Electrochim. Acta 145, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Grimaud, F. Mauvy, J.M. Bassat, S. Fourcade, M. Marrony, J.C. Grenier, J. Mater. Chem. 22, 16017 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Wu, Y. Zhao, R. Peng, C. Xia, Electrochim. Acta 54, 4888 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Fabbri, S. Licoccia, E. Traversa, E.D. Wachsman, Fuel Cells 9, 128 (2009)CrossRefGoogle Scholar
  14. 14.
    C. Solís, L. Navarrete, S. Roitsch, J.M. Serra, J. Mater. Chem. 22, 16051 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Taillades, P. Pers, P. Batocchi, M. Taillades, ECS Trans. 57, 1289 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Yang, X. Zhang, H. Zhao, Y. Shen, Z. Du, C. Zhang, Int. J. Hydrog. Energy 40, 2800 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Zhao, B. He, J. Gu, F. Liu, X. Chu, C. Xia, Int. J. Hydrog. Energy 37, 548 (2012)CrossRefGoogle Scholar
  18. 18.
    E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Energy Environ. Sci. 4, 4984 (2011)CrossRefGoogle Scholar
  19. 19.
    E. Fabbri, D. Pergolesi, S. Licoccia, E. Traversa, Solid State Ionics 181, 1043 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalo, R. Gerbasi, J. Alloys Compd. 470, 477 (2009)CrossRefGoogle Scholar
  21. 21.
    C.-Y. Yoo, D.S. Yun, J.H. Joo, J.H. Yu, J. Alloys Compd. 621, 263 (2015)CrossRefGoogle Scholar
  22. 22.
    A.L. Smirnova, K.R. Ellwood, G.M. Crosbie, J. Electrochem. Soc. 148, A610 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, J. Appl. Electrochem. 32, 875 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Hershkovitz, S. Baltianski, Y. Tsur, Solid State Ionics 188, 104 (2011)CrossRefGoogle Scholar
  25. 25.
    B.A. Boukamp, Electrochim. Acta 154, 35 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Chen, L. Lu, J. Li, Z. Yu, W. Kong, H. Zhu, J. Power Sources 196, 3178 (2011)CrossRefGoogle Scholar
  27. 27.
    D.S. Yun, J.H. Joo, J.H. Yu, H.C. Yoon, J.-N. Kim, C.-Y. Yoo, J. Power Sources 284, 245 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Yoo, Phase stability and oxygen transport properties of mixed ionic–electronic conducting oxides, Ph.D. Thesis University of Twente (2012), pp. 14–15Google Scholar
  29. 29.
    C. Zhang, H. Zhao, J. Mater. Chem. 22, 18387 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Korea Institute of Energy ResearchDaejeonRepublic of Korea
  2. 2.SsangYong Materials CorporationDaeguRepublic of Korea
  3. 3.Pohang Accelerator LaboratoryPohangRepublic of Korea
  4. 4.Department of Advanced Material EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  5. 5.Department of ChemistryPukyong National UniversityBusanRepublic of Korea

Personalised recommendations