Advertisement

Electrocatalysis

, Volume 7, Issue 3, pp 226–234 | Cite as

Spontaneous Deposition of Iridium onto Nickel Substrates for the Oxygen Evolution Reaction

  • Sophia R. Mellsop
  • Alister Gardiner
  • Aaron T. MarshallEmail author
Original Research

Abstract

Spontaneous deposition of Ir onto Ni substrates was investigated as a method to produce electrocatalytic layers for the oxygen evolution reaction in 30 % KOH solution. UV/Vis spectroscopy, cyclic voltammetry and other electrochemical methods are used to investigate the deposition process and the activity of the electrocatalytic coating towards the oxygen evolution reaction. From three solutions (IrCl3+HCl, H2IrCl6+HCl and H2IrCl6), H2IrCl6 is shown to give the most active and stable coating, with deposition times of 45 min at 60C enough to increase the activity of the Ni substrate for the oxygen evolution reaction. It is proposed that Ir deposition can occur via the reduction of the Ir precursor coupled to Ni oxidation, as well as the hydrolysis and localised precipitation of the Ir precursor due to the increase in surface pH during Ni dissolution.

Keywords

Iridium oxide Nickel oxide Oxygen evolution reaction Alkaline water electrolysis Electrocatalysis 

Notes

Acknowledgments

Funding for this work has been provided under MSI Contract C08X1002. We thank Mike Flaws and Tobias Baldhoff for assistance with the SEM and EDS analysis.

References

  1. 1.
    M. Momirlan, T. Veziroglu, Current status of hydrogen energy. Renew. Sust. Energ. Rev. 6, 141–179 (2002)CrossRefGoogle Scholar
  2. 2.
    S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta. 29, 1503–1512 (1984)CrossRefGoogle Scholar
  3. 3.
    M. Lyons, S. Floquet, Mechanism of oxygen reactions at porous oxide electrodes. Part 2 - Oxygen evolution at RuO2, IrO2 and Irx Ru1−x O 2 electrodes in aqueous acid and alkaline solution. Phys. Chem. Chem. Phys. 13(12), 5314–5335 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Guerrini, H. Chen, S. Trasatti, Oxygen evolution on aged IrOx/Ti electrodes in alkaline solutions. J. Solid State Electrochem. 11(7), 939–945 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Miao, D. Piron, Electrodeposition of Ni-transition alloys for the oxygen evolution reaction. J. Appl. Electrochem. 21(1), 55–59 (January 1991)Google Scholar
  6. 6.
    H. Dumont, P. Los, A. Lasia, H. Ménard, L. Brossard, Studies of the hydrogen evolution reaction on lanthanum phosphate-bonded composite nickel ruthenium electrodes in 1 M alkaline solutions. J. Appl. Electrochem. 23(7), 684–692 (1993)CrossRefGoogle Scholar
  7. 7.
    I. Bianchi, E. Guerrini, S. Trasatti, Electrocatalytic activation of Ni for H2 evolution by spontaneous deposition of Ru. Chem. Phys. 319(1-3), 192–199 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Vázquez-Gómez, S. Cattarin, P. Guerriero, M. Musiani, Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochim. Acta. 53(28), 8310–8318 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Verlato, S. Cattarin, N. Comisso, A. Gambirasi, M. Musiani, L. Vazquez-Gomez, Preparation of Pd-modified Ni foam electrodes and their use as anodes for the oxidation of alcohols in basic media. Electrocatalysis. 3(1), 48–58 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Duca, E. Guerrini, A. Colombo, S. Trasatti, Activation of nickel for hydrogen evolution by spontaneous deposition of iridium. Electrocatalysis. 4(4), 338–345 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Vázquez-Gómez, S. Cattarin, R. Gerbasi, P. Guerriero, M. Musiani, Activation of porous Ni cathodes towards hydrogen evolution by electrodeposition of Ir nuclei. J. Appl. Electrochem. 39(11), 2165–2172 (2009)CrossRefGoogle Scholar
  12. 12.
    Hong N. Nong, O. Hyung-Suk, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov, D. Teschner, P. Strasser, Oxide-supported IrNiOx coreShell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 54(10), 2975–2979 (2015)CrossRefGoogle Scholar
  13. 13.
    H.N. Nong, L. Gan, E. Willinger, D. Teschner, P. Strasser, IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem. Sci. 5(8), 2955–2963 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Battaglia, R. Inguanta, S. Piazza, C. Sunseri, Fabrication and characterization of nanostructured NiIrO2 electrodes for water electrolysis. Int. J. Hydrog. Energy. 39(30), 16797–16805 (2014)CrossRefGoogle Scholar
  15. 15.
    R.A. Nickell, W.H. Zhu, R.U. Payne, D.R. Cahela, B.J. Tatarchuk, Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide. J. Power Sources. 161(2), 1217–1224 (2006)CrossRefGoogle Scholar
  16. 16.
    W. Chrzanowski, A. Wieckowski, Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir. 13(22), 5974–5978 (1997)CrossRefGoogle Scholar
  17. 17.
    P.A. Ingeborg, C.S. Garner, A thermodynamic and kinetic study of hexachloro and aquopentachloro complexes of iridium(III) in aqueous solutions. J. Am. Chem. Soc. 84(11), 2032–2037 (1962)CrossRefGoogle Scholar
  18. 18.
    J.C. Chang, C.S. Garner, Kinetics of aquation of aquopentachloroiridate(III) and chloride anation of diaquotetrachloroiridate(III) anions. Inorg. Chem. 4(2), 209–215 (1965)CrossRefGoogle Scholar
  19. 19.
    I. Belova, T. Varlamova, B. Galyamov, Y. Roginskaya, R. Shifrina, S. Pruchenko, G. Kaplan, M. Sevostyanov, The composition, structure and electronic properties of thermally prepared iridium dioxide films. Mater. Chem. Phys. 20, 39–64 (1988)CrossRefGoogle Scholar
  20. 20.
    Y. Roginskaya, O. Morozova, The role of hydrated oxides in formation and structure of DSA-type oxide electrocatalysts. Electrochim. Acta. 40, 817–822 (1995)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2(5), 402–406 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Schnippering, P. Unwin, J. Hult, T. Laurila, C. Kaminski, J. Langridge, R. Jones, M. Mazurenka, S. Mackenzie, Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: a new probe of electrochemical processes. Electrochem. Commun. 10(12), 1827–1830 (2008)CrossRefGoogle Scholar
  23. 23.
    Y. Roginskaya, O. Morozova, E. Loubnin, A. Popov, Y. Ulitina, V. Zhurov, S. Ivanov, S. Trasatti, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopic characterization of IrO2 + Ta2 O 5 films. J. Chem. Soc. Faraday Trans. 89(11), 1707 (1993)CrossRefGoogle Scholar
  24. 24.
    X. Di, P. Diao, T. Jin, Q. Wu, X. Liu, X. Guo, H. Gong, F. Li, M. Xiang, Y. Ronghai, Iridium oxide nanoparticles and iridium/iridium oxide nanocomposites: photochemical fabrication and application in catalytic reduction of 4-Nitrophenol. ACS Appl. Mater. Interfaces. 7(30), 16738–16749 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Liu, A. Migdisov, A. Williams-Jones, The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: results of UVVisible spectroscopic experiments. Geochim. Cosmochim. Acta. 94, 276–290 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Yagi, E. Tomita, T. Kuwabara, Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J. Electroanal. Chem. 579(1), 83–88 (2005)CrossRefGoogle Scholar
  27. 27.
    S.R. Mellsop, A. Gardiner, A.T. Marshall, Electrocatalytic oxygen evolution on electrochemically deposited cobalt oxide films: comparison with thermally deposited films and effect of thermal treatment. Electrocatalysis, 1–11 (2014)Google Scholar
  28. 28.
    S.R. Mellsop, A. Gardiner, B. Johannessen, A.T. Marshall, Structure and transformation of oxy-hydroxide films on Ni anodes below and above the oxygen evolution potential in alkaline electrolytes. Electrochim. Acta. 168, 356–364 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Pourbaix. Atlas of electrochemical equilibria in aquesous solutions (Pergamon Press, New York, 1966)Google Scholar
  30. 30.
    Y.J. Chen, P.L. Taylor, D. Scherson, Electrochemical and in situ optical studies of supported iridium oxide films in aqueous solutions. J. Electrochem. Soc. 156(1), 14–21 (2009)CrossRefGoogle Scholar
  31. 31.
    J.E. Baur, T.W. Spaine, Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide. J. Electroanal. Chem. 443(2), 208–216 (1998)CrossRefGoogle Scholar
  32. 32.
    M. Petit, V. Plichon, Anodic electrodeposition of iridium oxide films. J. Electroanal. Chem. 444, 247–252 (1998)CrossRefGoogle Scholar
  33. 33.
    Y. Mo, I. Stefan, W. Cai, J. Dong, P. Carey, D. Scherson, In situ iridium LIII-edge x-ray absorption and surface enhanced raman spectroscopy of electrodeposited iridium dioxide films in aqueous electrolytes. J. Phys. Chem. B. 106, 3681–3686 (2002)CrossRefGoogle Scholar
  34. 34.
    I.J. Godwin, M.E.G. Lyons, Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution. Electrochem. Commun. 32, 39–42 (2013)CrossRefGoogle Scholar
  35. 35.
    S.R. Mellsop, A. Gardiner, A.T. Marshall, Electrocatalytic oxygen evolution on nickel oxy-hydroxide anodes: Improvement through rejuvenation. Electrochim. Acta. 180, 501–506 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Ardizzone, G. Fregonara, S. Trasatti, Inner and outer active surface of RuO2 electrodes. Electrochim. Acta. 35, 263–267 (1990)CrossRefGoogle Scholar
  37. 37.
    A.T. Marshall, L. Vaisson-Béthune, Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 61, 23–26 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sophia R. Mellsop
    • 1
  • Alister Gardiner
    • 2
  • Aaron T. Marshall
    • 1
    Email author
  1. 1.Department of Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and NanotechnologyUniversity of CanterburyChristchurchNew Zealand
  2. 2.Callaghan Innovation (Research) LimitedChristchurchNew Zealand

Personalised recommendations