, Volume 7, Issue 2, pp 149–158 | Cite as

The Electrooxidation of Formic Acid on Pd Nanoparticles: an Investigation of Size-Dependent Performance

  • Wenbo Ju
  • Roudabeh Valiollahi
  • Reza Ojani
  • Oliver SchneiderEmail author
  • Ulrich Stimming
Original Research


Palladium nanoparticles (Pd NPs) were deposited on highly oriented pyrolytic graphite (HOPG) substrates by using a potentiostatic double-pulse technique. The NPs possessed a narrow size distribution and wide dispersion. The particle density was in the order of 109 cm−2. The average height of Pd NPs was controlled in a range of 3 to 50 nm by adjusting the duration of growth pulse. The carbon monoxide (CO) stripping at Pd NPs smaller than 14 nm occurred predominantly at a potential above 1.1 V, which is around 0.2 V more positive than that at bulk Pd and larger Pd NPs, due to the small Pd NPs tending to possess well-ordered (111) facets and a high ratio of edge and corner atoms. The high coverage of adsorbed CO (COads) at small Pd NPs can block the formation of adsorbed hydroxyl (OHads) and drive up the oxidation potential. During formic acid oxidation (FAO), small Pd NPs were quickly poisoned by CO, which was formed initially at edges and corner atoms by electrochemical reduction of FAO product CO2 at low potentials. Based on the overall consideration of the low CO tolerance and the high difficulty to remove CO, it must be stated that Pd NPs smaller than 15 nm without strict shape control are not well suited for FAO.


Palladium nanoparticles Electrodeposition Carbon monoxide stripping Formic acid oxidation 



The research has partially received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement number [303492], which is gratefully acknowledged. We thank Prof. A. Knoll (TUM Informatics), Prof. U. Heiz (TUM Physical Chemistry), and Prof. A. Bandarenka (TUM Physics) for use of their facilities. W.J. thanks the China Scholarship Council for financial support. We would like to thank Dr. Hongjiao Li for the helpful discussions.


  1. 1.
    X. Yu, P.G. Pickup, J. Power Sources 182, 124–132 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, S.Y. Ha, R.I. Masel, J. Power Sources 130, 8–14 (2004)CrossRefGoogle Scholar
  3. 3.
    C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources 111, 83–89 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Mota-Lima, E.R. Gonzalez, M. Eiswirth, J. Braz, Chem. Soc. 25, 1208–1217 (2014)Google Scholar
  5. 5.
    S. Uhm, H.J. Lee, J. Lee, Phys. Chem. Chem. Phys. 11, 9326–9336 (2009)CrossRefGoogle Scholar
  6. 6.
    E. Antolini, Energy Environ. Sci. 2, 915–931 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Capon, R. Parsons, J. Electroanal. Chemi. Interfacial Electrochem. 44, 293–254 (1973)Google Scholar
  8. 8.
    M. Arenz, V. Stamenkovic, T.J. Schmidt, K. Wandelt, P.N. Ross, N.M. Markovic, Phys. Chem. Chem. Phys. 5, 4242–4251 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Jiang, H. Zhang, S. Zou, W. Cai, Phys. Chem. Chem. Phys. 16, 20360–20376 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Hoshi, M. Nakamura, K. Kida, Electrochem. Commun. 9, 279–282 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, J. Phys. Chem. B, 12480–12484 (2006)Google Scholar
  12. 12.
    M. Baldauf, D.M. Kolb, J. Phys. Chem. 100, 11375–11381 (1996)CrossRefGoogle Scholar
  13. 13.
    M. Ren, L. Zou, T. Yuan, Q. Huang, Z. Zou, X. Li, H. Yang, J. Power Sources 267, 527–532 (2014)CrossRefGoogle Scholar
  14. 14.
    R.K. Pandey, S. Patnaik, V. Lakshminarayanan, Catal. Lett. 144, 965–970 (2014)CrossRefGoogle Scholar
  15. 15.
    J.-N. Zheng, M. Zhang, F.-F. Li, S.-S. Li, A.-J. Wang, J.-J. Feng, Electrochim. Acta 130, 446–452 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Xia, S.I. Choi, J.A. Herron, N. Lu, J. Scaranto, H.C. Peng, J. Wang, M. Mavrikakis, M.J. Kim, Y. Xia, J. Am. Chem. Soc. 135, 15706–15709 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Shao, J. Odell, M. Humbert, T. Yu, Y. Xia, J. Phys. Chem. C 117, 4172–4180 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Tian, Z.Y. Zhou, N.F. Yu, L.Y. Wang, S.G. Sun, J. Am. Chem. Soc. 132, 7580–7581 (2010)CrossRefGoogle Scholar
  19. 19.
    W. Hong, Y. Fang, J. Wang, E. Wang, J. Power Sources 248, 553–559 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Wang, J.-J. Zhai, K. Jiang, J.-Q. Wang, W.-B. Cai, Int. J. Hydrog. Energy 40, 1726–1734 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Vafaei, M. Rezaei, S.H. Tabaian, F. Mahboubi, D.F. Haghshenas, J. Solid State Electrochem. 19, 289–298 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Zuopeng, L. Muwu, H. Mingjia, Z. Jianhuang, L. Yuexia, G. Yanqin, L. Shijun, J. Power Sources 254, 183–189 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Yiyi, L. Zhouguang, F. Wenguang, S. Jewell, M.K.H. Leung, J. Mater. Chem. A 2, 3894–3898 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Wu, M. Cao, M. Shen, R. Cao, Chem. Cat. Chem. 6, 1731–1736 (2014)Google Scholar
  25. 25.
    R. Liu, F. Liu, D. Fu, Y. Bai, G. Han, Y. Tian, M. Li, Y. Xiao, Y. Li, Catal. Commun. 46, 146–149 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Bai, L. Yang, L. Li, J. Lv, K. Wang, J. Zhang, J. Phys. Chem. C 113, 10568–10573 (2009)CrossRefGoogle Scholar
  27. 27.
    D. Chen, P. Cui, H. He, H. Liu, J. Yang, J. Power Sources 272, 152–159 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Li, D. Cheng, X. Qiu, D. Cao, Electrochim. Acta 143, 44–48 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Chen, P. Cui, H. Liu, J. Yang, Electrochim. Acta 153, 461–467 (2015)CrossRefGoogle Scholar
  30. 30.
    M.T. Koper, Nanoscale 3, 2054–2073 (2011)CrossRefGoogle Scholar
  31. 31.
    W. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, A. Wieckowski, J. Phys. Chem. B 110, 13393–13398 (2006)CrossRefGoogle Scholar
  32. 32.
    W. Zhou, J.Y. Lee, J. Phys. Chem. C 112, 3789–3793 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Suo, I.M. Hsing, Electrochim. Acta 55, 210–217 (2009)CrossRefGoogle Scholar
  34. 34.
    F.J. Vidal-Iglesias, R.M. Aran-Ais, J. Solla-Gullon, E. Garnier, E. Herrero, A. Aldaz, J.M. Feliu, Phys. Chem. Chem. Phys. 14, 10258–10265 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Chumillas, C. Busó-Rogero, J. Solla-Gullón, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, Electrochem. Commun. 13, 1194–1197 (2011)CrossRefGoogle Scholar
  36. 36.
    W. Ju, T. Brülle, M. Favaro, L. Perini, C. Durante, O. Schneider, U. Stimming, Chem. Electron. Chem. 2, 547–558 (2015)Google Scholar
  37. 37.
    I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
  38. 38.
    R.M. Penner, J. Phys. Chem. B 106, 3339–3353 (2002)CrossRefGoogle Scholar
  39. 39.
    M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochim. Acta 53, 7583–7598 (2008)CrossRefGoogle Scholar
  40. 40.
    L.-l. Fang, Q. Tao, M.-f. Li, L.-w. Liao, D. Chen, Y.-x. Chen, Chin. J. Chem. Phys. 23, 543–548 (2010)CrossRefGoogle Scholar
  41. 41.
    T. Brülle, W. Ju, P. Niedermayr, A. Denisenko, O. Paschos, O. Schneider, U. Stimming, Molecules 16, 10059–10077 (2011)CrossRefGoogle Scholar
  42. 42.
    H. Liu, F. Favier, K. Ng, M.P. Zach, R.M. Penner, Electrochim. Acta 47, 671–677 (2001)CrossRefGoogle Scholar
  43. 43.
    J.V. Zoval, J. Lee, S. Gorer, R.M. Penner, J. Phys. Chem. B 102, 1166–1175 (1998)CrossRefGoogle Scholar
  44. 44.
    J.V. Zoval, R.M. Stiger, P.R. Biernacki, R.M. Penner, J. Phys. Chem. 100, 837–844 (1996)CrossRefGoogle Scholar
  45. 45.
    M. Raşa, B.W.M. Kuipers, A.P. Philipse, J. Colloid Interf. Sci. 250, 303–315 (2002)CrossRefGoogle Scholar
  46. 46.
    M. Hara, U. Linke, T. Wandlowski, Electrochim. Acta 52, 5733–5748 (2007)CrossRefGoogle Scholar
  47. 47.
    B.R. Shrestha, A. Nishikata, T. Tsuru, Electrochim. Acta 70, 42–49 (2012)CrossRefGoogle Scholar
  48. 48.
    N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45, 117–229 (2002)CrossRefGoogle Scholar
  49. 49.
    H. Conrad, G. Ertl, J. Küppers, Surf. Sci. 76, 323–342 (1978)CrossRefGoogle Scholar
  50. 50.
    T.H.M. Housmans, C.G.M. Hermse, M.T.M. Koper, J. Electroanal. Chem. 607, 69–82 (2007)CrossRefGoogle Scholar
  51. 51.
    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Faraday Discuss. 125, 357–377 (2004)CrossRefGoogle Scholar
  52. 52.
    N. Hoshi, K. Kagaya, Y. Hori, J. Electroanal. Chem. 485, 55–60 (2000)CrossRefGoogle Scholar
  53. 53.
    N. Hoshi, M. Kuroda, Y. Hori, J. Electroanal. Chem. 521, 155–160 (2002)CrossRefGoogle Scholar
  54. 54.
    A. Hitotsuyanagi, S. Kondo, M. Nakamura, N. Hoshi, J. Electroanal. Chem. 657, 123–127 (2011)CrossRefGoogle Scholar
  55. 55.
    T.H.M. Housmans, M.T.M. Koper, J. Electroanal. Chem. 575, 39–51 (2005)CrossRefGoogle Scholar
  56. 56.
    A.M. El-Aziz, L.A. Kibler, J. Electroanal. Chem. 534, 107–114 (2002)CrossRefGoogle Scholar
  57. 57.
    G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Nørskov, Catal. Lett. 141, 909–913 (2011)CrossRefGoogle Scholar
  58. 58.
    C.R. Henry, Surf. Sci. Rep. 31, 231–325 (1998)CrossRefGoogle Scholar
  59. 59.
    R. Van Hardeveld, F. Hartog, Surf. Sci. 15, 189–230 (1969)CrossRefGoogle Scholar
  60. 60.
    B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, in: H.K. Bruce C. Gates (Ed.) Advances in Catalysis, Academic Press2000, pp. 71–129Google Scholar
  61. 61.
    I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rösch, J. Phys. Chem. B 107, 255–264 (2003)CrossRefGoogle Scholar
  62. 62.
    K.A. Friedrich, F. Henglein, U. Stimming, W. Unkauf, Electrochim. Acta 45, 3283–3293 (2000)CrossRefGoogle Scholar
  63. 63.
    C.D. Zeinalipour-Yazdi, D.J. Willock, L. Thomas, K. Wilson, A.F. Lee, Surf. Sci., (2015)Google Scholar
  64. 64.
    S. Choi, J.A. Herron, J. Scaranto, H. Huang, Y. Wang, X. Xia, T. Lv, J. Park, H.C. Peng, M. Mavrikakis, Y. Xia, Chem. Cat. Chem. 7, 2077–2084 (2015)Google Scholar
  65. 65.
    A. Capon, R. Parsons, J. Electroanal. Chemi. Interfacial Electrochem. 45, 205–231 (1973)CrossRefGoogle Scholar
  66. 66.
    A. Capon, R. Parsons, J. Electroanal. Chemi. Interfacial Electrochem. 44, 1–7 (1973)CrossRefGoogle Scholar
  67. 67.
    C. Rice, S. Ha, R.I. Masel, A. Wieckowski, J. Power Sources 115, 229–235 (2003)CrossRefGoogle Scholar
  68. 68.
    X. Yu, P.G. Pickup, J. Power Sources 187, 493–499 (2009)CrossRefGoogle Scholar
  69. 69.
    X. Yu, P.G. Pickup, Electrochem. Commun. 11, 2012–2014 (2009)CrossRefGoogle Scholar
  70. 70.
    M.D. Obradović, S.L. Gojković, Electrochim. Acta 88, 384–389 (2013)CrossRefGoogle Scholar
  71. 71.
    J.Y. Wang, H.X. Zhang, K. Jiang, W.B. Cai, J. Am. Chem. Soc. 133, 14876–14879 (2011)CrossRefGoogle Scholar
  72. 72.
    C.M.Y. Yue, K.H. Lim, Catal. Lett. 128, 221–226 (2008)CrossRefGoogle Scholar
  73. 73.
    D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 137, 4288–4291 (2015)CrossRefGoogle Scholar
  74. 74.
    H. Wang, L.R. Alden, F.J. DiSalvo, H.D. Abruna, Langmuir 25, 7725–7735 (2009)CrossRefGoogle Scholar
  75. 75.
    X. Zhang, T. Arikawa, Y. Murakami, K. Yahikozawa, Y. Takasu, Electrochim. Acta 40, 1889–1897 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wenbo Ju
    • 1
  • Roudabeh Valiollahi
    • 2
    • 3
  • Reza Ojani
    • 3
  • Oliver Schneider
    • 2
    Email author
  • Ulrich Stimming
    • 4
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institut für Informatik VITechnische Universität MünchenGarchingGermany
  3. 3.Faculty of ChemistryUniversity of MazandaranBabolsarIran
  4. 4.School of ChemistryNewcastle UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations