Advertisement

Electrocatalysis

, Volume 7, Issue 1, pp 70–78 | Cite as

Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations

  • Sunyhik D. Ahn
  • Adam Kolodziej
  • Richard Malpass-Evans
  • Mariolino Carta
  • Neil B. McKeown
  • Stephen D. Bull
  • Antoine Buchard
  • Frank MarkenEmail author
Original Research

Abstract

The free radical 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4B-TEMPO) is active as an electrocatalyst for primary alcohol oxidations when immobilised at an electrode surface and immersed into an aqueous carbonate buffer solution. In order to improve the catalytic process, a composite film electrode is developed based on (i) carbon microparticles of 2–12 μm diameter to enhance charge transport and (ii) a polymer of intrinsic microporosity (here PIM-EA-TB with a BET surface area of 1027 m2 g−1). The latter acts as a highly rigid molecular framework for the embedded free radical catalyst with simultaneous access to aqueous phase and substrate. The resulting mechanism for the oxidation of primary alcohols is shown to switch in reaction order from first to zeroth with increasing substrate concentration consistent with a kinetically limited process with competing diffusion of charge at the polymer layer-electrode interface (here the “LEk” case in Albery-Hillman notation). Reactivity optimisation and screening for a wider range of primary alcohols in conjunction with DFT-based relative reactivity correlation reveals substrate hydrophobicity as an important factor for enhancing catalytic currents. The PIM-EA-TB host matrix is proposed to control substrate partitioning and thereby catalyst reactivity and selectivity.

Graphical Abstract

The water-insoluble molecular alcohol oxidation catalyst 4-benzoyloxy-TEMPO is employed here embedded in a nano-composite film based on a hydrophobic polymer of intrinsic microporosity (PIM)

Keywords

Carbon microspheres Membrane Fuel cell Biofuel Mesoporosity Voltammetry 

Supplementary material

12678_2015_284_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2033 kb)

References

  1. 1.
    R.A. Sheldon, Catal. Today 247, 4 (2015)CrossRefGoogle Scholar
  2. 2.
    N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35, 675 (2006)CrossRefGoogle Scholar
  3. 3.
    W.J. Albery, A.R. Hillman, J. Electroanal. Chem. 170, 27 (1984)CrossRefGoogle Scholar
  4. 4.
    J.M. Saveant, Chem. Rev. 108, 2348 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Ciriminna, M. Pagliaro, Org. Process. Res. Dev. 14, 245 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Vogler, A. Studer, Synthesis-Stuttgart 13, 1979 (2008)Google Scholar
  7. 7.
    K.U. Schoening, Chim. Oggi-Chem. Today 28, 18 (2010)Google Scholar
  8. 8.
    P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Eyley, W. Thielemans, Nanoscale 6, 7764 (2014)CrossRefGoogle Scholar
  10. 10.
    R.B. Grubbs, Polym. Rev. 51, 104 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)CrossRefGoogle Scholar
  12. 12.
    D.P. Hickey, M.S. McCammant, F. Giroud, M.S. Sigman, S.D. Minteer, J. Amer. Chem. Soc. 136, 15917 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Gilhespy, M. Lok, X. Baucherel, Catal. Today 117, 114 (2006)CrossRefGoogle Scholar
  14. 14.
    R.A. Sheldon, I.W.C.E. Arends, G.T. Brink, A. Dijksman, Acc. Chem. Res. 25, 774 (2002)CrossRefGoogle Scholar
  15. 15.
    J.T. Hill-Cousins, J.K. Kuleshova, R.A. Green, P.R. Birkin, D. Pletcher, T.J. Underwood, S.G. Leach, R.C.D. Brown, ChemSusChem 5, 326 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Jin, K.J. Edler, F. Marken, J.L. Scott, Green Chem. 16, 3322 (2014)CrossRefGoogle Scholar
  17. 17.
    W.F. Bailey, J.M. Bobbitt, K.B. Wiberg, J. Org. Chem. 72, 4504 (2007)CrossRefGoogle Scholar
  18. 18.
    R.A. Green, J.T. Hill-Cousins, R.C.D. Brown, D. Pletcher, S.G. Leach, Electrochim. Acta 113, 550 (2013)CrossRefGoogle Scholar
  19. 19.
    J.L. Wang, M. Zhang, Z. Zheng, F.W. Yu, J.B. Ji, Chem. Eng. J. 229, 234 (2013)CrossRefGoogle Scholar
  20. 20.
    D.H. Hunter, D.H.R. Barton, W.B. Motherwell, Tetrahedron Lett. 25, 603 (1984)CrossRefGoogle Scholar
  21. 21.
    A. Israeli, M. Patt, M. Oron, A. Samuni, R. Kohen, S. Goldstein, Free Radic. Biol. Med. 38, 317 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Ciriminna, G. Palmisano, M. Pagliaro, ChemCatChem 7, 552 (2015)CrossRefGoogle Scholar
  23. 23.
    P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Adv. Mater. 16, 456 (2004)CrossRefGoogle Scholar
  24. 24.
    P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Chem. Commun. 10, 230 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, Science 339, 303 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Carta, M. Croad, J.C. Jansen, P. Bernardo, G. Clarizia, N.B. McKeown, Polym. Chem. 5, 5255 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lanc, N.B. McKeown, Adv. Mater. 26, 3526 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, M. Lee, I. Rose, N.B. McKeown, Polym. Chem. 5, 5267 (2014)CrossRefGoogle Scholar
  29. 29.
    F.J. Xia, M. Pan, S.C. Mu, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, A. Brew, D.J. Morgan, F. Marken, Electrochim. Acta 128, 3 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.Y. Rong, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, F. Marken, Electrochem. Commun. 46, 26 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.Y. Rong, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, F. Marken, Electroanalysis 26, 904 (2014)CrossRefGoogle Scholar
  32. 32.
    D. He, Y.Y. Rong, K.Z. Kui, S.C. Mu, T. Peng, R. Malpass-Evans, M. Carta, N.B. Mckeown, F. Marken, Electrochem. Commun. 59, 72 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Kolodziej, S.D. Ahn, M. Carta, R. Malpass-Evans, N.B. McKeown, R.S.L. Chapman, S.D. Bull, F. Marken, Electrochim. Acta 160, 195 (2015)CrossRefGoogle Scholar
  34. 34.
    Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  35. 35.
    Obtained by data base search and predictive approximation at www.ACDlabs.com. Accessed June 2015
  36. 36.
    C.Y. Cummings, J.D. Wadhawan, T. Nakabayashi, M. Haga, L. Rassaei, S.E.C. Dale, S. Bending, M. Pumera, S.C. Parker, F. Marken, J. Electroanal. Chem. 657, 196 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sunyhik D. Ahn
    • 1
  • Adam Kolodziej
    • 1
  • Richard Malpass-Evans
    • 2
  • Mariolino Carta
    • 2
  • Neil B. McKeown
    • 2
  • Stephen D. Bull
    • 1
  • Antoine Buchard
    • 1
  • Frank Marken
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of BathBathUK
  2. 2.EaStCHEM School of ChemistryUniversity of EdinburghEdinburghUK

Personalised recommendations