, Volume 7, Issue 1, pp 13–21 | Cite as

Effect of the OH/Pt Ratio During Polyol Synthesis on Metal Loading and Particle Size in DMFC Catalysts

  • Nadia AounEmail author
  • Alicja Schlange
  • Antonio R. dos Santos
  • Ulrich Kunz
  • Thomas Turek
Original Research


A systematic variation of the molar ratio between hydroxide ions and platinum during polyol synthesis of Pt electrocatalysts supported on carbon nanotubes was conducted. The resulting materials were physically characterized by transmission electron microscopy, thermogravimetric analysis, and X-ray diffraction. It could be shown that precise control of the OH/Pt ratio is necessary for achieving small-sized uniformly distributed Pt nanoparticles at high chemical yield. Simple adjustment of the pH value is not sufficient to control the reduction conditions since even small pH variations give rise to significant changes of the catalyst properties. The optimal OH/Pt molar ratio was found to be 5:1 resulting in small particle size (ca. 2.5 nm in diameter) and high platinum loading (ca. 39 wt% at a nominal loading of 40 wt%). Moreover, we have shown that the developed electrocatalyst exhibits a high activity toward the oxygen reduction reaction which is confirmed by half-cell experiments in a rotating disk electrode and in single-cell experiments in direct methanol fuel cells.


Platinum nanoparticles Multi-wall carbon nanotubes (CNT) Direct methanol fuel cell (DMFC) Polyol reduction pH value Particle size control 



The authors thank the Energy Research Centre of Niedersachsen (Energie-Forschungszentrum Niedersachsen) for financial support of this work. The authors also would like to express their gratitude to the following persons and institutes at Clausthal University of Technology, Germany: Peggy Knospe at Particle Technology for TEM investigations, Ulrike Köcher at Technical Chemistry for TGA measurements, and Philipp Schlender at Inorganic and Analytical Chemistry for XRD measurements.

Supplementary material

12678_2015_275_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)


  1. 1.
    Y. Shao, G. Yin, J. Wang, Y. Gao, P. Shi, J Electrochem Soc 153, A1261 (2006)CrossRefGoogle Scholar
  2. 2.
    S.L. Knupp, W. Li, O. Paschos, T.M. Murray, J. Snyder, P. Haldar, Carbon 46, 1276 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J Appl Electrochem 36, 507 (2006)CrossRefGoogle Scholar
  4. 4.
    Z.W. Zhao, Z.P. Guo, J. Ding, D. Wexler, Z.F. Ma, D.Y. Zhang, H.K. Liu, Electrochem Commun 8, 245 (2006)CrossRefGoogle Scholar
  5. 5.
    Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem Commun 394, (2003)Google Scholar
  6. 6.
    F. Alcaide, G. Álvarez, O. Miguel, M.J. Lázaro, R. Moliner, A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, Electrochem Commun 11, 1081 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Schlange, A.R. dos Santos, U. Kunz, T. Turek, Beilstein, J Org Chem 7, 1412 (2011)Google Scholar
  8. 8.
    P. Ehrburger, Adv Colloid Interface Sci 21, 275 (1984)CrossRefGoogle Scholar
  9. 9.
    J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, J Phys Chem B 110, 11775 (2006)CrossRefGoogle Scholar
  10. 10.
    X. Wang, M. Waje, Y. Yan, Electrochem Solid-State Lett 8, A42 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Chem Mater 10, 718 (1998)CrossRefGoogle Scholar
  12. 12.
    J.F. Lin, V. Kamavaram, A.M. Kannan, J Power Sources 195, 466 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Xiong, A. Manthiram, Solid State Ionics 176, 385 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Soehn, S. Zils, N. Nicoloso, C. Roth, J Power Sources 196, 6079 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Kim, J. Lee, J. Kim, J Power Sources 180, 191 (2008)CrossRefGoogle Scholar
  16. 16.
    C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J Am Chem Soc 126, 8028 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Li, W.-X. Chen, J. Zhao, W. Xing, Z.-D. Xu, Carbon 43, 2168 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Xing, J Phys Chem B 108, 19255 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Yang, T.C. Deivaraj, H.-P. Too, J.Y. Lee, Langmuir 20, 4241 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Li, L. Zheng, S. Liao, J. Zeng, J Power Sources 196, 10570 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Herricks, J. Chen, Y. Xia, Nano Lett 4, 2367 (2004)CrossRefGoogle Scholar
  22. 22.
    H. Oh, J. Oh, Y. Hong, H. Kim, Electrochim Acta 52, 7278 (2007)CrossRefGoogle Scholar
  23. 23.
    L. Ren, Y. Xing, Electrochim Acta 53, 5563 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Chem Mater 12, 1622 (2000)CrossRefGoogle Scholar
  25. 25.
    F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics 32/33, 198 (1989)CrossRefGoogle Scholar
  26. 26.
    M. Sakthivel, A. Schlange, U. Kunz, T. Turek, J Power Sources 195, 7083 (2010)CrossRefGoogle Scholar
  27. 27.
    U. Kunz, T. Turek, Beilstein, J Org Chem 5, 7 (2009)Google Scholar
  28. 28.
    Z. Peng, H. Yang, Nano Today 4, 143 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Kloke, F. von Stetten, R. Zengerle, S. Kerzenmacher, Adv Mater 23, 4976 (2011)CrossRefGoogle Scholar
  30. 30.
    E.F. Holby, W. Sheng, Y. Shao-Horn, D. Morgan, Energ Environ Sci 2, 865 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Wang, Electrochim Acta 47, 2981 (2002)CrossRefGoogle Scholar
  32. 32.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu Rev Mater Sci 30, 545 (2000)CrossRefGoogle Scholar
  33. 33.
    S. Kim, S.J. Park, Anal Chim Acta 619, 43 (2008)CrossRefGoogle Scholar
  34. 34.
    J.M. Kim, A. Patwardhan, A. Bott, D.H. Thompson, BBA-Biomembr 1617, 10 (2003)CrossRefGoogle Scholar
  35. 35.
    H. Oh, J. Oh, H. Kim, J Power Sources 183, 600 (2008)CrossRefGoogle Scholar
  36. 36.
    Lince 2.31d, Materialwissenschaften, TU Darmstadt,, Accessed 01 June 2011
  37. 37.
    V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G.F. Wang, P.N. Ross, N.M. Markovic, Nat Mater 6, 241 (2007)CrossRefGoogle Scholar
  38. 38.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal Chem 82, 6321 (2010)CrossRefGoogle Scholar
  39. 39.
    S.-A. Sheppard, S.A. Campbell, J.R. Smith, G.W. Lloyd, F.C. Walsh, T.R. Ralph, Analyst 123, 1923 (1998)CrossRefGoogle Scholar
  40. 40.
    P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 26, 98 (1918)Google Scholar
  41. 41.
    J.W. Jung, C.Y. Kim, G.E. Jung, K.B. Shim, S.H. Jeong, S.C. Yi, J Ceram Process Res 12, 96 (2011)Google Scholar
  42. 42.
    K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J Phys Chem B 109, 14433 (2005)CrossRefGoogle Scholar
  43. 43.
    K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V.R. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim Acta 53, 3181 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nadia Aoun
    • 1
    Email author
  • Alicja Schlange
    • 1
  • Antonio R. dos Santos
    • 1
  • Ulrich Kunz
    • 1
  • Thomas Turek
    • 1
  1. 1.Institute of Chemical and Electrochemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations