, Volume 6, Issue 2, pp 127–131 | Cite as

A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism

  • Alnald Javier
  • Brian Chmielowiec
  • Jean Sanabria-Chinchilla
  • Youn-Geun Kim
  • Jack H. Baricuatro
  • Manuel P. Soriaga


The effective abatement of atmospheric carbon through its conversion via electrochemical reduction to pure and oxygenated hydrocarbon fuels relies on the ability to control product selectivity at viable current densities and faradaic efficiencies. One critical aspect is the choice of the electrode and, in the CO2-reduction electrocatalyst landscape, copper sits as the only metal known to deliver a remarkable variety of reduction products other than carbon monoxide and formic acid [1, 2, 3, 4, 5, 6, 7]. However, much better catalyst performance is needed. The overall energy efficiency of copper is less than 40 % [1, 2, 3, 4], and its nominal overvoltage at benchmark current densities remains unacceptably large at ca. 1 V. The diversity of the product distribution also becomes a major inconvenience in the likelihood that only one product is desired; unless, of course, if the selectivity window for such product is already known. Several experimental parameters influence the...


HCHO CH3CH2OH High Activation Barrier Differential Electrochemical Mass Spectrometry Nernst Diffusion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award No. DE-SC0004993.


  1. 1.
    Y. Hori, Mod Asp. Electrochem. 42, 89 (2008)Google Scholar
  2. 2.
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833 (1994)CrossRefGoogle Scholar
  3. 3.
    K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc. 136, 14107 (2014)CrossRefGoogle Scholar
  4. 4.
    K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci. 5, 7050 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594, 1 (2006)CrossRefGoogle Scholar
  6. 6.
    K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, Chem. Sci. 2, 1902 (2011)CrossRefGoogle Scholar
  7. 7.
    C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134, 7231 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Calle-Vallejo, M.T.M. Koper, Angew. Chem. 125, 7423 (2013)CrossRefGoogle Scholar
  9. 9.
    K.J.P. Schouten, E.P. Gallent, M.T.M. Koper, J. Electroanal. Chem. 716, 53 (2014)CrossRefGoogle Scholar
  10. 10.
    J.H. Baricuatro, C.B. Ehlers, K.D. Cummins, M.P. Soriaga, J.L. Stickney, Y.-G. Kim, J. Electroanal. Chem. 716, 101 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.-G. Kim, M.P. Soriaga, J. Electroanal. Chem. 734, 7 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.-G. Kim, J. H. Baricuatro, A. Javier, J. M. Gregoire, M. P. Soriaga, Langmuir, In press (2014).Google Scholar
  13. 13.
    K.J.P. Schouten, Z. Qin, E.P. Gallent, M.T.M. Koper, J. Am. Chem. Soc. 134, 9864 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Baltruschat, in Interfacial electrochemistry, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), p. 577Google Scholar
  15. 15.
    H. Baltruschat, J. Am. Soc. Mass Spectrom. 15, 1693 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Sanabria-Chinchilla, M.P. Soriaga, R. Bussar, H. Baltruschat, J. Appl. Electrochem. 36, 1253 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Sanabria-Chinchilla, J.H. Baricuatro, M.P. Soriaga, F. Hernandez, H. Baltruschat, J. Coll. Interf. Sci. 314, 152 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Sanabria-Chinchilla, Y.-G. Kim, X. Chen, D. Li, H. Baltruschat, M.P. Soriaga, Mod. Asp. Electrochem 44, 275 (2010)Google Scholar
  19. 19.
    R. Crovetto, J. Phys. Chem. Ref. Data 20, 575 (1991)CrossRefGoogle Scholar
  20. 20.
    S. Vollmer, G. Witte, C. Woll, Catal. Lett. 77, 97 (2001)CrossRefGoogle Scholar
  21. 21.
    R.A. Hadden, H.D. Vandervell, K.C. Waugh, G. Webb, Catal. Lett. 1, 27 (1988)CrossRefGoogle Scholar
  22. 22.
    J.R.B. Gomes, J.A.N.F. Gomes, F. Illas, J. Mol. Catal. A 170, 187 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Forni, G. Wiesenekker, E.J. Baerends, G.F. Tantardini, Int. J. Quantum Chem. 52, 1067 (1994)CrossRefGoogle Scholar
  24. 24.
    A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, Energy Environ. Sci. 3, 1311 (2010)CrossRefGoogle Scholar
  25. 25.
    A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett. 3, 251 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Angew. Chem. Int. Ed. 52, 2459 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alnald Javier
    • 1
  • Brian Chmielowiec
    • 1
  • Jean Sanabria-Chinchilla
    • 1
  • Youn-Geun Kim
    • 1
  • Jack H. Baricuatro
    • 1
  • Manuel P. Soriaga
    • 1
    • 2
  1. 1.Division of Chemistry and Chemical Engineering, Joint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations