Electrocatalysis

, Volume 6, Issue 2, pp 229–236 | Cite as

High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)Ox Composition Space

  • Aniketa Shinde
  • Ryan J. R. Jones
  • Dan Guevarra
  • Slobodan Mitrovic
  • Natalie Becerra-Stasiewicz
  • Joel A. Haber
  • Jian Jin
  • John M. Gregoire
Article

Abstract

Solar generation of fuel is a promising future energy technology, and strong acidic conditions are highly desirable for integrated solar hydrogen generators. In particular, water splitting near pH 0 is attractive due to the availability of high theoretical efficiency, high performance hydrogen evolution catalysts, and robust ion exchange membranes. The lack of a stable, earth-abundant oxygen evolution catalyst inhibits deployment of this technology, and development of such a material is hampered by the strong anti-correlation between electrochemical stability and catalytic activity of non-precious metal oxides. High-throughput screening of mixed metal oxides offers a promising route to the identification of new stable catalysts and requires careful design of experiments to combine the concepts of rapid experimentation and long-term stability. By combining serial and parallel measurement techniques, we have created a high-throughput platform to assess the catalytic activity of material libraries in the as-prepared state and after 2 h of operation. By screening the entire (Mn–Co–Ta–Sb)Ox composition space, we observe that the compositions with highest initial activity comprised cobalt and manganese oxides, but combinations with antimony and tantalum offer improved stability. By combining the desired properties of catalytic activity and stability, the optimal composition regions are readily identified, demonstrating the success and fidelity of this novel high-throughput screening platform.

Keywords

Solar fuels Water splitting High throughput Oxygen evolution Electrochemical stability 

References

  1. 1.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)CrossRefGoogle Scholar
  2. 2.
    T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110, 6474 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)CrossRefGoogle Scholar
  4. 4.
    Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications; (Wiley, 2000)Google Scholar
  5. 5.
    J. Jin, K. Walczak, M.R. Singh, C. Karp, N.S. Lewis, C. Xiang, Energ Environ Sci 7, 2504–2517 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Navarro-Flores, Z. Chong, S. Omanovic, J. Mol. Catal. A Chem. 226, 179 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191 (2013)CrossRefGoogle Scholar
  8. 8.
    K.A. Persson, B. Waldwick, P. Lazic, G. Ceder, Phys Riew B 85, 235438 (2012)CrossRefGoogle Scholar
  9. 9.
    V. Maurice, P. Marcus, Electrochim. Acta 84, 129 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Snyder, J. Erlebacher, J. Electrochem. Soc. 157, C125 (2010)CrossRefGoogle Scholar
  11. 11.
    G. Chen, S.R. Bare, T.E. Mallouk, J. Electrochem. Soc. 149, A1092 (2002)CrossRefGoogle Scholar
  12. 12.
    A.G. Dokoutchaev, F. Abdelrazzaq, M.E. Thompson, J. Willson, C. Chang, A. Bocarsly, Chem. Mater. 14, 3343 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Seley, K. Ayers, B.A. Parkinson, ACS Comb. Sci. 15, 82 (2013)CrossRefGoogle Scholar
  14. 14.
    E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, T.E. Mallouk, Science 280, 1735 (1998)CrossRefGoogle Scholar
  15. 15.
    Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energ. Environ. Sci. 7, 2535 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Su, W. Jia, C.-M. Li, Y. Lei, ChemSusChem 7, 361 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Bonakdarpour, R. Löbel, S. Sheng, T.L. Monchesky, J.R. Dahn, J. Electrochem. Soc. 153, A2304 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Bonakdarpour, K. Stevens, G.D. Vernstrom, R. Atanasoski, A.K. Schmoeckel, M.K. Debe, J.R. Dahn, Electrochim. Acta 53, 688 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Kötz, S. Stucki, Electrochim. Acta 31, 1311 (1986)CrossRefGoogle Scholar
  20. 20.
    J. Gaudet, A.C. Tavares, S. Trasatti, D. Guay, Chem. Mater. 17, 1570 (2005)CrossRefGoogle Scholar
  21. 21.
    C.P. De Pauli, S. Trasatti, J. Electroanal. Chem. 396, 161 (1995)CrossRefGoogle Scholar
  22. 22.
    A. Marshall, S. Sunde, M. Tsypkin, R. Tunold, Int. J. Hydrogen Energy 32, 2320 (2007)CrossRefGoogle Scholar
  23. 23.
    R.S. Yeo, J. Orehotsky, W. Visscher, S. Srinivasan, J. Electrochem. Soc. 128, 1900 (1981)CrossRefGoogle Scholar
  24. 24.
    K. Kadakia, M.K. Datta, O.I. Velikokhatnyi, P. Jampani, S.K. Park, P. Saha, J.A. Poston, A. Manivannan, P.N. Kumta, Int. J. Hydrogen Energy 37, 3001 (2012)CrossRefGoogle Scholar
  25. 25.
    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)CrossRefGoogle Scholar
  26. 26.
    J.M. Gregoire, C. Xiang, S. Mitrovic, X. Liu, M. Marcin, E.W. Cornell, J. Fan, J. Jin, J. Electrochem. Soc. 160, F337 (2013)CrossRefGoogle Scholar
  27. 27.
    J.M. Gregoire, C.X. Xiang, X.N. Liu, M. Marcin, J. Jin, Rev. Sci. Instrum. 84, 024102 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Fan, S.W. Boettcher, G.D. Stucky, Chem. Mater. 18, 6391 (2006)CrossRefGoogle Scholar
  29. 29.
    X.N. Liu, Y. Shen, R.T. Yang, S.H. Zou, X.L. Ji, L. Shi, Y.C. Zhang, D.Y. Liu, L.P. Xiao, X.M. Zheng, S. Li, J. Fan, G.D. Stucky, Nano Lett. 12, 5733 (2012)CrossRefGoogle Scholar
  30. 30.
    J.M. Gregoire, M. Kostylev, M.E. Tague, P.F. Mutolo, R.B. van Dover, F.J. DiSalvo, H.D. Abruña, J. Electrochem. Soc. 156, B160 (2009)CrossRefGoogle Scholar
  31. 31.
    X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, K. Sieradzki, Nano Lett. 14, 2569 (2014)CrossRefGoogle Scholar
  32. 32.
    F.R. Nikkuni, E.A. Ticianelli, L. Dubau, M. Chatenet, Electrocatalysis 4, 104 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aniketa Shinde
    • 1
  • Ryan J. R. Jones
    • 1
  • Dan Guevarra
    • 1
  • Slobodan Mitrovic
    • 1
  • Natalie Becerra-Stasiewicz
    • 1
  • Joel A. Haber
    • 1
  • Jian Jin
    • 2
  • John M. Gregoire
    • 1
  1. 1.Joint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Engineering Division and Joint Center for Artificial PhotosynthesisBerkeley National LaboratoryBerkeleyUSA

Personalised recommendations