, Volume 6, Issue 1, pp 42–50 | Cite as

CO2 Electroreduction on Cu-Modified Platinum Single Crystal Electrodes in Aprotic Media

  • Alexander V. Rudnev
  • Maria R. Ehrenburg
  • Elena B. Molodkina
  • Inna G. Botriakova
  • Alexey I. Danilov
  • Thomas Wandlowski


Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.


Platinum single crystal Copper deposition Carbon dioxide Propylene carbonate Acetonitrile 



This work was supported by the EraNet program (ECOON, project No 156), by Russian Foundation for Basic Research (project No 12-03-91655-ERA) and by the University of Bern. A.R. also acknowledges the support by the CTI Swiss Competence Center for Energy Research (SCCER Heat and Electricity Storage).

Supplementary material

12678_2014_217_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 1.95 mb)


  1. 1.
    M. Jitaru, J. Univ. Chem. Technol. Metall. 42, 333–344 (2007)Google Scholar
  2. 2.
    Y. Hori, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer New York, New York, 2008), pp. 89–189Google Scholar
  3. 3.
    M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594, 1–19 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43, 631–675 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Hoshi, E. Sato, Y. Hori, J. Electroanal. Chem. 540, 105–110 (2003)CrossRefGoogle Scholar
  6. 6.
    N. Hoshi, M. Kuroda, Y. Hori, J. Electroanal. Chem. 521, 155–160 (2002)CrossRefGoogle Scholar
  7. 7.
    I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J. Electroanal. Chem. 533, 135–143 (2002)CrossRefGoogle Scholar
  8. 8.
    Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Mol. Catal. A Chem. 199, 39–47 (2003)CrossRefGoogle Scholar
  9. 9.
    N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45, 117–229 (2002)CrossRefGoogle Scholar
  10. 10.
    E.B. Molodkina, M.R. Ehrenburg, Y.M. Polukarov, A.I. Danilov, J. Souza-Garcia, J.M. Feliu, Electrochim. Acta 56, 154–165 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833–1839 (1994)CrossRefGoogle Scholar
  12. 12.
    A.S. Varela, C. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E.L. Stephens, I. Chorkendorff, J. Phys. Chem. C 117, 20500–20508 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Reske, M. Duca, M. Oezaslan, K.J.P. Schouten, M.T.M. Koper, P. Strasser. J. Phys. Chem. Lett. 2410–2413 (2013)Google Scholar
  14. 14.
    M. Anouti, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, J. Chem. Thermodyn. 50, 71–79 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Clavilier, D. Armand, S.G. Sun, M. Petit, J. Electroanal. Chem. Interfacial Electrochem. 205, 267–277 (1986)CrossRefGoogle Scholar
  16. 16.
    J. Clavilier, R. Faure, G. Guinet, R. Durand, J. Electroanal. Chem. Interfacial Electrochem. 107, 205–209 (1979)CrossRefGoogle Scholar
  17. 17.
    J. Clavilier, J. Electroanal. Chem. Interfacial Electrochem. 107, 211–216 (1979)CrossRefGoogle Scholar
  18. 18.
    J. Clavilier, in Interfacial electrochemistry: theory, experimental, and applications, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), pp. 231–248Google Scholar
  19. 19.
    A.V. Rudnev, E.B. Molodkina, M.R. Ehrenburg, R.G. Fedorov, A.I. Danilov, Y.M. Polukarov, J.M. Feliu, Russ. J. Electrochem. 45, 1052–1063 (2009)CrossRefGoogle Scholar
  20. 20.
    I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
  21. 21.
    A.I. Danilov, E.B. Molodkina, A.V. Rudnev, Y.M. Polukarov, J.M. Feliu, Electrochim. Acta 50, 5032–5043 (2005)CrossRefGoogle Scholar
  22. 22.
    M.S. Zei, Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 208, 77–91 (1999)Google Scholar
  23. 23.
    C.H. Shue, S.L. Yau, J. Phys. Chem. B 105, 5489–5496 (2001)CrossRefGoogle Scholar
  24. 24.
    O. Endo, N. Ikemiya, M. Ito, Surf. Sci. 514, 234–240 (2002)CrossRefGoogle Scholar
  25. 25.
    R. Francke, V. Climent, H. Baltruschat, J.M. Feliu, J. Electroanal. Chem. 624, 228–240 (2008)CrossRefGoogle Scholar
  26. 26.
    A.I. Danilov, E.B. Molodkina, Y.M. Polukarov, V. Climent, J.M. Feliu, Electrochim. Acta 46, 3137–3145 (2001)CrossRefGoogle Scholar
  27. 27.
    A.I. Danilov, E.B. Molodkina, Y.M. Polukarov, Russ. J. Electrochem. 36, 987–997 (2000)CrossRefGoogle Scholar
  28. 28.
    A.V. Rudnev, E.B. Molodkina, A.I. Danilov, Y.M. Polukarov, J.M. Feliu, Russ. J. Electrochem. 42, 381–392 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987)CrossRefGoogle Scholar
  30. 30.
    Y. Tomita, Y. Hori, in Stud. Surf. Sci. Catal., ed. by T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (Elsevier, 1998), pp. 581–584Google Scholar
  31. 31.
    Y. Tomita, S. Teruya, O. Koga, Y. Hori, J. Electrochem. Soc. 147, 4164–4167 (2000)CrossRefGoogle Scholar
  32. 32.
    A.V. Rudnev, T. Wandlowski, Russ. J. Electrochem. 48, 259–270 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Schlaup, S. Horch, Phys. Chem. Chem. Phys. 15, 19659–19664 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander V. Rudnev
    • 1
    • 2
  • Maria R. Ehrenburg
    • 1
  • Elena B. Molodkina
    • 1
  • Inna G. Botriakova
    • 1
  • Alexey I. Danilov
    • 1
  • Thomas Wandlowski
    • 2
  1. 1.Russian academy of sciences A.N. Frumkin Institute of Physical chemistry and Electrochemistry RASMoscowRussia
  2. 2.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations