Advertisement

Electrocatalysis

, Volume 5, Issue 4, pp 445–455 | Cite as

Electrocatalytic Oxygen Evolution on Electrochemically Deposited Cobalt Oxide Films: Comparison with Thermally Deposited Films and Effect of Thermal Treatment

  • Sophia R. Mellsop
  • Alister Gardiner
  • Aaron T. MarshallEmail author
Article

Abstract

Electrocatalytic cobalt oxide layers have been prepared on nickel substrates using thermal decomposition and electrochemical deposition methods. Importantly, it was confirmed that the electrochemical deposition method could be applied to nickel foam substrates for use in zero-gap alkaline water electrolysis cells. The oxide layers produced were then investigated for their activity towards the oxygen evolution reaction in 30 wt % KOH solution and found to be superior compared with the uncoated nickel substrate. Layers produced by both methods had similar electrochemical behaviour, provided that the layers were annealed at temperatures ≥350 C. This thermal treatment was required to mechanically stabilise the electrochemically deposited cobalt oxide layer. Due to this finding, the effect of annealing temperature was investigated for the electrochemically deposited layer, and it was found that the overpotential for oxygen evolution increased with increasing annealing temperature. Using cyclic voltammetry and impedance spectroscopy, it is concluded that the decrease in performance with increasing annealing temperature is largely caused by the corresponding decrease in active surface area. However, for annealing temperatures ≥400 C, additional resistances are introduced that cause lower performance. The impedance data suggest that these additional resistances are caused by either a decrease in the conductivity of the cobalt oxide layer itself, or the formation of a passivating-like nickel oxide layer between the active cobalt oxide and the nickel substrate, or both. The resistances’ dependence on potential suggests that they originate from a semi-conducting material and these additional resistances ultimately give rise to non-linear Tafel behaviour.

Keywords

Cobalt oxide Oxygen evolution reaction Alkaline water electrolysis Electrochemical impedance spectroscopy Electrocatalyst 

Notes

Acknowledgements

Funding for this work has been provided under MSI Contract C08X1002

References

  1. 1.
    M. Momirlan, T.N. Veziroglu, Current status of hydrogen energy. Renew. Sust. Energ. Rev. 6 (1-2), 141–179 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36 (3), 307–326 (2010)CrossRefGoogle Scholar
  3. 3.
    E. Guerrini, S. Trasatti, Recent developments in understanding factors of electrocatalysis. Russ. J. Electrochem. 42 (10), 1017–1025 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Iwakura, K. Hirao, H. Tamura, Preparation of ruthenium dioxide electrodes and their anodic polarization characteristics in acidic solutions. Electrochim. Acta. 22 (4), 335–340 (1977)CrossRefGoogle Scholar
  5. 5.
    M.E. Lyons, S Floquet, Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen Evolution at RuO 2,I r O 2 and Ir xRu 1−x O 2 Electrodes in Aqueous Acid and Alkaline Solution. Phys. Chem. Chem. Phys. 13 (12), 5314–5335 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Trasatti, G. Lodi, in Oxygen and chloride evolution at conductive metallic oxide anodes, ed. by S. Trasatti. Electrodes of Conductive Metallic Oxides: Part B, chapter 10 (Elsevier, Amsterdam, 1981), pp. 521–626Google Scholar
  7. 7.
    L. Brossard, C. Messier, Effect of cobalt deposits on nickel substrates on the oxygen evolution reaction in KOH. J. Appl. Electrochem. 23 (4), 379–386 (1993)CrossRefGoogle Scholar
  8. 8.
    E.B. Castro, C.A. Gervasi, Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrog. Energy. 25 (12), 1163–1170 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Dinamani, P. Vishnu Kamath, Electrocatalysis of oxygen evolution at stainless steel anodes by electrosynthesized cobalt hydroxide coatings. J. Appl. Electrochem. 30 (10), 1157–1161 (2000)CrossRefGoogle Scholar
  10. 10.
    A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell, T.D. Tilley, Size-dependent activity of Co 3 O 4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C. 113 (33), 15068–15072 (2009)CrossRefGoogle Scholar
  11. 11.
    S.P. Singh, S. Samuel, S.K. Tiwari, R.N. Singh, Preparation of thin Co 3 O 4 films on Ni and their electrocatalytic surface properties towards oxygen evolution. Int. J. Hydrog. Energy. 21 (3), 171–178 (1996)CrossRefGoogle Scholar
  12. 12.
    B. Cui, H. Lin, J. Li, X. Li, J. Yang, J. Tao, Core-ring structured NiCo 2 O 4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18 (9), 1440–1447 (2008)CrossRefGoogle Scholar
  13. 13.
    J.A. Koza, Z. He, A.S. Miller, J.A. Switzer, Electrodeposition of crystalline Co 3 O 4-A catalyst for the oxygen evolution reaction. Chem. Mater. 24 (18), 3567–3573 (2012)CrossRefGoogle Scholar
  14. 14.
    I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, T. Vitanov, Electrocatalytic activity of spinel related cobalties M x C o 3−x O 4 (M = Li, Ni,Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 429 (1-2), 157–168 (1997)CrossRefGoogle Scholar
  15. 15.
    V. Gupta, S. Gupta, N. Miura, Al-substituted α-Cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. J. Power Sources. 177 (2), 685–689 (2008)CrossRefGoogle Scholar
  16. 16.
    E.B. Castro, C.A. Gervasi, J.R. Vilche, Oxygen evolution on electrodeposited cobalt oxides. J. Appl. Electrochem. 28 (8), 835–841 (1998)CrossRefGoogle Scholar
  17. 17.
    R. Boggio, A. Carugati, S. Trasatti, Electrochemical surface properties of Co 3 O 4 electrodes. J. Appl. Electrochem. 17 (4), 828–840 (1987)CrossRefGoogle Scholar
  18. 18.
    G.C. Silva, C.S. Fugivara, G. Tremiliosi Filho, P.T.A. Sumodjo, A.V. Benedetti, Electrochemical behavior of cobalt oxide coatings on cold-rolled steel in alkaline sodium sulfate. Electrochim. Acta. 47 (12), 1875–1883 (2002)CrossRefGoogle Scholar
  19. 19.
    F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co 3 O 4 films. J. Electrochem. Soc. 143 (5), 1532–1539 (1996)CrossRefGoogle Scholar
  20. 20.
    C. Bocca, A. Barbucci, M. Delucchi, G. Cerisola, Nickel-cobalt oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. Int. J. Hydrog. Energy. 24 (1), 21–26 (1999)CrossRefGoogle Scholar
  21. 21.
    B. Chi, H. Lin, J. Li, N. Wang, J. Yang, Comparison of three preparation methods of NiCo 2 O 4 electrodes. Int. J. Hydrog. Energy. 31 (9), 1210–1214 (2006)CrossRefGoogle Scholar
  22. 22.
    E. Laouini, M. Hamdani, M.I.S. Pereira, Y. Berghoute, J. Douch, M.H. Mendonca, R.N. Singh, Impedance study of spinel type Fe-Co 3 O 4 oxide thin film electrodes in alkaline medium. Int. J. Electrochem. Sci. 4 (8), 1074–1084 (2009)Google Scholar
  23. 23.
    C. Fan, D.L. Piron, Electrodeposition as a means of producing large-surface electrodes required in water electrolysis. Surf. Coat. Technol. 73 (1–2), 91–97 (1995)CrossRefGoogle Scholar
  24. 24.
    R.M. Gabr, Effect of thermal treatment on the surface characteristics and catalytic activity of pure and doped cobalt oxide. Surf. Technol. 11 (3), 205–214 (1980)CrossRefGoogle Scholar
  25. 25.
    R. Garavaglia, C.M. Mari, S. Trasatti, C. de Asmundis, Physicochemical characterization of Co 3 O 4 prepared by thermal decomposition I: phase composition and morphology. 19(3), 197–215 (1983)Google Scholar
  26. 26.
    J.R.S. Brownson, C. Levy-Clement, Nanostructured α - and β -cobalt hydroxide thin films. Electrochim. Acta. 54 (26), 6637–6644 (2009)CrossRefGoogle Scholar
  27. 27.
    R.A. Nickell, W.H. Zhu, R.U. Payne, D.d R. Cahela, B.J Tatarchuk, Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide. J. Power Sources. 161 (2), 1217–1224 (2006)CrossRefGoogle Scholar
  28. 28.
    E. Laouini, M. Hamdani, M.I.S. Pereira, J. Douch, M.H. Mendonca, Y. Berghoute, R.N. Singh, Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium. J. Appl. Electrochem. 38 (11), 1485–1494 (2008)CrossRefGoogle Scholar
  29. 29.
    M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O’Brien, L. Russell, Hydrous nickel oxide:redox switching and the oxygen evolution reaction in aqueous alkaline solution. J. Electrochem. Soc. 159 (12), H932–H944 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Bocca, A. Barbucci, G. Cerisola, The influence of surface finishing on the electrocatalytic properties of nickel for the oxygen evolution reaction (OER) in alkaline solution. Int. J. Hydrog. Energy. 23 (4), 247–252 (1998)CrossRefGoogle Scholar
  31. 31.
    M.R. Gennero de Chialvo, Oxygen evolution reaction on thick hydrous nickel oxide electrodes. Electrochim. Acta. 33 (6), 825–830 (1988)CrossRefGoogle Scholar
  32. 32.
    K. Juodkazis, J. Juodkazyte, R. Vilkauskaite, V. Jasulaitiene, Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electrochem. 12 (11), 1469–1479 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, I. Nagashima, Basic study of alkaline water electrolysis. Electrochim. Acta. 100, 249–256 (2013)CrossRefGoogle Scholar
  34. 34.
    I.D. Belova, V.V. Shalaginov, B.Sh. Galyamov, Yu.E. Roginskaya, D.M. Shub, Defect structure of non-stoichiometric films of Co 3 O 4. Russ. J. Inorg. Chem. 23 (2), 161–163 (1978)Google Scholar
  35. 35.
    A. Dukic, V. Alar, M. Firak, S. Jakovljevic, A significant improvement in material of foam. J. Alloys Compd. 573, 128–132 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Matsumoto, E. Sato, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14 (5), 397–426 (1986)CrossRefGoogle Scholar
  37. 37.
    S. Trasatti, O. A. Petrii, Real surface area measurements in electrochemistry. Pure Appl. Chem. 63 (5), 711–734 (1991)CrossRefGoogle Scholar
  38. 38.
    B. Chi, J. Li, Y. Han, Y. Chen, Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo 2 O 4/Ni electrode. Int. J. Hydrog. Energy. 29 (6), 605–610 (2004)CrossRefGoogle Scholar
  39. 39.
    F. Svegl, B. Orel, I. Grabec-Svegl, V. Kaucic, Characterization of spinel Co 3 O 4 and Li-doped Co 3 O 4 thin film electrocatalysts prepared by the sol-gel route. Electrochim. Acta. 45 (25-26), 4359–4371 (2000)CrossRefGoogle Scholar
  40. 40.
    S. Ardizzone, G. Fregonara, S. Trasatti, Inner and outer active surface of RuO 2 electrodes. 35. 1, 263–267 (1990)Google Scholar
  41. 41.
    M.E.G. Lyons, M.P. Brandon, The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem. 631 (1-2), 62–70 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Levine, A.L. Smith, Theory of the differential capacity of the oxide/aqueous electrolyte interface. Discuss. Faraday Soc. 52, 290–301 (1971)CrossRefGoogle Scholar
  43. 43.
    E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta. 48 (25–26), 3945–3952 (2003)CrossRefGoogle Scholar
  44. 44.
    S. Palmas, F. Ferrara, A. Vacca, M. Mascia, A.M. Polcaro, Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochim. Acta. 53 (2), 400–406 (2007)CrossRefGoogle Scholar
  45. 45.
    M.E.G. Lyons, M.P. Brandon, The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution. Part II—Cobalt. Int. J. Electrochem. Sci. 3 (12), 1425–1462 (2008)Google Scholar
  46. 46.
    R.L. Doyle, M.E. Lyons, An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 15 (14), 5224–5237 (2013)CrossRefGoogle Scholar
  47. 47.
    D.A. Harrington, P. van den Driessche, Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta. 56 (23), 8005–8013 (2011)CrossRefGoogle Scholar
  48. 48.
    S. Veena Kumari, M. Natarajan, V.K. Vaidyan, P. Koshy, Surface oxidation of nickel thin films. J. Mater. Sci. Lett. 11 (11), 761–762 (1992)CrossRefGoogle Scholar
  49. 49.
    M. Bajdich M. García-Mota V. Viswanathan, Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C. 116 (39), 21077–21082 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sophia R. Mellsop
    • 1
  • Alister Gardiner
    • 2
  • Aaron T. Marshall
    • 1
    Email author
  1. 1.Department of Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and NanotechnologyUniversity of CanterburyChristchurchNew Zealand
  2. 2.Callaghan Innovation (Research) LimitedChristchurchNew Zealand

Personalised recommendations