Advertisement

Electrocatalysis

, Volume 5, Issue 3, pp 226–228 | Cite as

Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions

  • Jack H. Baricuatro
  • Youn-Geun Kim
  • Fadl H. Saadi
  • Charles C. L. McCrory
  • Jean Sanabria-Chinchilla
  • Danielle Crouthers
  • Marcetta Y. Darensbourg
  • Manuel P. Soriaga
Article
Our long-held interest in the resiliency of electrochemical functionalities upon surface immobilization has herded us from directly chemisorbed electroactive moieties [ 1, 2], to anchor group-leashed redox-active couples [ 3] and to surface-tethered enzyme-inspired molecular catalysts [ 4, 5, 6]. The latter represent the most intricate because the electrocatalytic activities involve mixed-valence states and may require certain entatic (fractionally rotated) configurations [ 6, 7]. In this regard, we recently investigated the proton-reduction electrocatalysis by hydrogenase-inspired di-iron complexes at polycrystalline and (111)-faceted Au electrodes [ 4, 5, 6]. 1 One complex, (μ-S 2C 3H 6)[Fe(CO) 3][Fe(CO) 2PPh 3], was devoid of a surface anchor group and, hence, was present only in solution; the other complex, (μ-S 2C 3H 6)[Fe(CO) 3][Fe(CO) 2(PPh 2(CH 2) 2SH)] ( I), was bound to the surface through its mercapto group that allowed the catalytic di-iron moiety to remain to be pendant. The electrochemistry...

Keywords

Hydrogen Evolution Reaction Hexacarbonyl Molecular Catalyst Uninterrupted Operation Faradaic Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: except for the synthesis of the di-iron complexes which was funded by the National Science Foundation (CHE-091679 and CHE-1266097) (MYD), all the work was supported through the Office of Science of the US Department of Energy under Award No. DE-SC0004993.

References

  1. 1.
    M.P. Soriaga, Chem. Rev. 90, 771 (1990)CrossRefGoogle Scholar
  2. 2.
    M.P. Soriaga, in “Frontiers of electrochemistry. structure of electrified interfaces.” Chapter 4, ed. by P.N. Ross, J. Lipkowski (VCH Publishers, New York, 1993)Google Scholar
  3. 3.
    J.E. Soto, D. Li, J. Sanabria, M.P. Soriaga, J. Mol. Struct. 890, 298 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Sanabria-Chinchilla, A. Javier, D. Crouthers, J.H. Baricuatro, M.Y. Darensbourg, M.P. Soriaga, Electrocatalysis 5, 5 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Sanabria-Chinchilla, A. Javier, D. Crouthers, J.H. Baricuatro, M.Y. Darensbourg, M.P. Soriaga, Electrocatalysis 5, 113 (2014)CrossRefGoogle Scholar
  6. 6.
    B. Chmielowiec, F. Saadi, J.H. Baricuatro, A. Javier, Y.-G. Kim, G. Sun, M.Y. Darensbourg, M.P. Soriaga, J. Electroanal. Chem. 716, 63 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Surawatanawong, J.W. Tye, M.Y. Darensbourg, M.B. Hall, Dalton Trans. 39, 3093 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Chong, I.P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M.P. Soriaga, M.Y. Darensbourg, J. Chem. Soc. Dalton Trans. 21, 4158 (2003)CrossRefGoogle Scholar
  9. 9.
    A.M. Kluwera, R. Kaprea, F. Hartla, M. Lutzb, A.L. Spekb, A.M. Brouwera, P.W.N.M. van Leeuwena, J.N.H. Reeka, PNAS 106, 10460 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Chatt, J. R. Dilworth, J. A. Schmutz, J. A. Zubieta, J. Chem. Soc. Dalton Trans. (1979) 1595Google Scholar
  11. 11.
    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jack H. Baricuatro
    • 1
  • Youn-Geun Kim
    • 1
  • Fadl H. Saadi
    • 1
  • Charles C. L. McCrory
    • 1
  • Jean Sanabria-Chinchilla
    • 1
  • Danielle Crouthers
    • 2
  • Marcetta Y. Darensbourg
    • 2
  • Manuel P. Soriaga
    • 1
    • 2
  1. 1.Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations