Electrocatalysis

, Volume 5, Issue 2, pp 114–124 | Cite as

Redox and Oxygen Evolution Electrocatalytic Properties of Nafion and Single-Walled Carbon Nanotube/Hydrous Iron Oxide Composite Films

Article

Abstract

Novel Nafion and single-walled carbon nanotube composite hydrous iron oxide electrodes have been fabricated using a simple potential cycling methodology and are examined as oxygen evolution electrocatalyst films. Hydrous oxide materials prepared in this manner are typically quite amorphous in nature. Here, we show, using scanning electron microscopy and cyclic voltammetry, that a more uniform oxide growth can be achieved using a Nafion or carbon nanotube matrix as a template. This templated growth produces oxide films with unique surface morphologies and electrical properties. In particular, the composite films exhibit superior conductivity, as shown by electrochemical impedance spectroscopy, with up to eightfold decrease in charge transfer resistance. The ultimate result is an enhancement in the electrocatalytic performance of the hydrous Fe oxide film. Steady-state polarisation studies on the oxygen evolution reaction show a reduction in overpotential of up to 50 mV for the composite electrodes with a threefold increase in turnover frequency.

Keywords

Hydrous oxide Composite-modified electrode Surface morphology Oxygen evolution Tafel analysis Turnover frequency 

References

  1. 1.
    G.P. Dinga, J. Chem. Educ. 688, 65 (1985)Google Scholar
  2. 2.
    R. Schlogl, ChemSusChem 209, 3 (2010)Google Scholar
  3. 3.
    G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 39, 57 (2004)Google Scholar
  4. 4.
    K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 307, 36 (2010)Google Scholar
  5. 5.
    H. Tributsch, Int. J. Hydrog. Energy 5911, 33 (2008)Google Scholar
  6. 6.
    J. Ohi, J. Mater. Res. 3180, 20 (2005)Google Scholar
  7. 7.
    D.E. Hall, J. Electrochem. Soc. 317, 130 (1983)Google Scholar
  8. 8.
    H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, Chem. Cat. Chem. 724, 2 (2010)Google Scholar
  9. 9.
    S. Marinia, P. Salvi, P. Nelli, R. Pesentia, M. Villa, M. Berrettoni, G. Zangaric, Y. Kiros, Electrochim. Acta 384(82) (2012)Google Scholar
  10. 10.
    A. Michas, F. Andolfatto, M.E.G. Lyons, R. Durand, Key Eng. Mater. 535, 72–74 (1992)Google Scholar
  11. 11.
    K. Kinoshita, Electrochemical oxygen technology (Wiley, New York, 1992)Google Scholar
  12. 12.
    M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1386, 3 (2008)Google Scholar
  13. 13.
    M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1425, 3 (2008)Google Scholar
  14. 14.
    M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1463, 3 (2008)Google Scholar
  15. 15.
    T. Kessler, J.R. Vilche, M. Ebert, K. Jüttner, W.J. Lorenz, Chem. Eng. Technol. 263, 14 (1991)Google Scholar
  16. 16.
    K.K. Lian, D.W. Kirk, S.J. Thorpe, J. Electrochem. Soc. 3704, 142 (1995)Google Scholar
  17. 17.
    A.M. Fundo, L.M. Abrantes, Russ. J. Electrochem. 1291, 42 (2006)Google Scholar
  18. 18.
    S.I. Cordorba, R.B. Carbonio, M. Lopez Teijelo, V.A. Macagno, Electrochim. Acta 749, 32 (1987)Google Scholar
  19. 19.
    Y. Zhang, X. Cao, H. Yuan, W. Zhang, Z. Zhou, Int. J. Hydrogen Energy 529, 24 (1999)Google Scholar
  20. 20.
    X. Wang, H. Luo, D.R. Zhou, H. Yang, P.J. Sebastian, S.A. Gamboa, Int. J. Hydrogen Energy 967, 29 (2004)Google Scholar
  21. 21.
    B.S. Yeo, A.T. Bell, J. Phys. Chem. C 8394, 116 (2012)Google Scholar
  22. 22.
    M.W. Kanan, D.G. Nocera, Science 1072, 321 (2008)Google Scholar
  23. 23.
    B.S. Yeo, A.T. Bell, J. Am. Chem. Soc. 5587, 133 (2011)Google Scholar
  24. 24.
    E.B. Castro, C.A. Gervasi, J.R. Vilche, J. Appl. Electrochem. 835, 28 (1998)Google Scholar
  25. 25.
    M.S. El-Deab, M.I. Awad, A.M. Mohammad, T. Ohsaka, Electrochem. Commun. 2082, 9 (2007)Google Scholar
  26. 26.
    C.R. Davidson, G. Kissel, S. Srinivasan, J. Electroanal. Chem. 129, 132 (1982)Google Scholar
  27. 27.
    S.K. Tiwari, S. Samuel, R.N. Singh, G. Poillerat, J.F. Koenig, P. Chartiers, Int. J. Hydrogen Energy 9, 20 (1995)Google Scholar
  28. 28.
    C. Bocca, A. Barbucci, M. Delucchi, G. Cerisola, Int. J. Hydrogen Energy 21, 24 (1999)Google Scholar
  29. 29.
    E. Guerrini, M. Piozzini, A. Castelli, A. Colombo, S. Trasatti, J. Solid State Electrochem. 363, 12 (2008)Google Scholar
  30. 30.
    C. Iwakura, A. Honji, H. Tamura, Electrochim. Acta 1319, 26 (1981)Google Scholar
  31. 31.
    P. Rasiyah, A.C.C. Tseung, J. Electrochem. Soc. 365, 130 (1983)Google Scholar
  32. 32.
    S. Palmas, F. Ferrara, A. Vacca, M. Mascia, A.M. Polcaro, Electrochim. Acta 400, 53 (2007)Google Scholar
  33. 33.
    J.P. Singh, N.K. Singh, R.N. Singh, Int. J. Hydrogen Energy 433, 24 (1999)Google Scholar
  34. 34.
    R.N. Singh, J.P. Singh, B. Lal, M.J.K. Thomas, S. Bera, Electrochim. Acta 5515, 51 (2006)Google Scholar
  35. 35.
    J.O.’.M. Bockris, T. Otagawa, J. Phys. Chem. 2960, 87 (1983)Google Scholar
  36. 36.
    Y. Matsumoto, S. Yamada, T. Hishida, E. Sato, J. Electrochem. Soc. 2360, 127 (1980)Google Scholar
  37. 37.
    C. Bocca, G. Cerisola, E. Magnone, A. Barbucci, Int. J. Hydrogen Energy 699, 24 (1999)Google Scholar
  38. 38.
    R.N. Singh, B. Lal, Int. J. Hydrogen Energy 45, 27 (2002)Google Scholar
  39. 39.
    J. Suntivich, K.J. May, H. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 1383, 334 (2011)Google Scholar
  40. 40.
    B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 4294, 134 (2012)Google Scholar
  41. 41.
    S. Romain, L. Vigara, A. Llobet, Acc. Chem. Res. 1944, 42 (2009)Google Scholar
  42. 42.
    T.J. Meyer, Acc. Chem. Res. 163, 22 (1989)Google Scholar
  43. 43.
    N.D. McDaniel, F.J. Coughlin, L.L. Tinker, S. Bernhard, J. Am. Chem. Soc. 210, 130 (2008)Google Scholar
  44. 44.
    J.F. Hull, D. Balcells, J.D. Blakemore, C.D. Incarvito, O. Eisenstein, G.W. Brudvig, R.H. Crabtree, J. Am. Chem. Soc. 8730, 131 (2009)Google Scholar
  45. 45.
    R. Lalrempuia, N.D. McDaniel, H. Müller-Bunz, S. Bernhard, M. Albrecht, Angew. Chem. Int. Ed. 9765, 49 (2010)Google Scholar
  46. 46.
    C.S. Mullins, V.L. Pecoraro, Coord. Chem. Rev. 416, 252 (2008)Google Scholar
  47. 47.
    D.J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C.P. Berlinguette, Chem. Commun. 4249, 47 (2011)Google Scholar
  48. 48.
    D.K. Dogutan, R. McGuire, D.G. Nocera, J. Am. Chem. Soc. 9178, 133 (2011)Google Scholar
  49. 49.
    Q. Yin, J.M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A.E. Kuznetsov, Z. Luo, K.I. Hardcastle, C.L. Hill, Science 342, 328 (2010)Google Scholar
  50. 50.
    W.C. Ellis, N.D. McDaniel, S. Bernhard, T.J. Collins, J. Am. Chem. Soc. 10990, 132 (2010)Google Scholar
  51. 51.
    J.L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J.J. Pla, M. Costas, Nat. Chem. 807, 3 (2011)Google Scholar
  52. 52.
    L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nature 418, 4 (2012)Google Scholar
  53. 53.
    D.A. Butty, F.C. Anson, J. Am. Chem. Soc. 59, 106 (1984)Google Scholar
  54. 54.
    M. Sharp, D.D. Montgomery, F.C. Anson, J. Electroanal. Chem. 247, 194 (1985)Google Scholar
  55. 55.
    R.G. Compton, M.J. Day, A. Ledwith, I.I.A. Abdour, J. Chem. Soc. Chem. Commun. (328) (1986)Google Scholar
  56. 56.
    K.C. Pillai, A.S. Kumar, J.-M. Zen, J. Mol. Cat. A Chem. 277, 160 (2000)Google Scholar
  57. 57.
    O. Makoto, K.J. Kazuyuki, Chem. Rev. 399, 95 (1995)Google Scholar
  58. 58.
    R. Ramaraj, A. Kira, M. Kaneko, J. Chem. Soc. Faraday Trans. 1 83, 1539 (1987)Google Scholar
  59. 59.
    A.T. Thornton, G.S. Laurence, J. Chem. Soc. Chem. Commun. (408) (1987)Google Scholar
  60. 60.
    A. Slamo-Schwok, Y. Feitelson, J. Rabani, J. Phys. Chem. 2222, 85 (1981)Google Scholar
  61. 61.
    Y. Kurimura, M. Nagashima, K. Takato, E. Tsuchida, M. Kaneko, A. Yamada, J. Phys. Chem. 2432, 86 (1982)Google Scholar
  62. 62.
    K. Kinoshita, M. Yagi, M. Kaneko, J. Mol. Cat. A Chem. 1, 142 (1999)Google Scholar
  63. 63.
    M. Yagi, K. Kinoshita, M. Kaneko, J. Phys. Chem. 11098, 100 (1996)Google Scholar
  64. 64.
    M. Yagi, S. Tokita, K. Nagoshi, I. Ogino, M. Kaneko, J. Chem. Soc. Faraday Trans. 2457, 92 (1996)Google Scholar
  65. 65.
    R.L. Doyle, I.J. Godwin, M.P. Brandon, M.E.G. Lyons, Phys. Chem. Chem. Phys. 13737, 15 (2013)Google Scholar
  66. 66.
    R.L. Doyle, M.E.G. Lyons, J. Electrochem. Soc. H142, 160 (2013)Google Scholar
  67. 67.
    R.L. Doyle, M.E.G. Lyons, Phys. Chem. Chem. Phys. 5224, 15 (2013)Google Scholar
  68. 68.
    M.E.G. Lyons, R.L. Doyle, Int. J. Electrochem. Sci. 9488, 7 (2012)Google Scholar
  69. 69.
    M.E.G. Lyons, R.L. Doyle, M.P. Brandon, Phys. Chem. Chem. Phys. 21530, 13 (2011)Google Scholar
  70. 70.
    M.E.G. Lyons, M.P. Brandon, Phys. Chem. Chem. Phys. 2203, 11 (2009)Google Scholar
  71. 71.
    M.E.G. Lyons, L. Russell, M. O’Brien, R.L. Doyle, I. Godwin, M.P. Brandon, Int. J. Electrochem. Sci. 2710, 7 (2012)Google Scholar
  72. 72.
    M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O’Brien, L. Russell, J. Electrochem. Soc. H932, 159 (2012)Google Scholar
  73. 73.
    I.J. Godwin, M.E.G. Lyons, Electrochem. Commun. 39, 32 (2013)Google Scholar
  74. 74.
    L.D. Burke, E.J.M. O’Sullivan, J. Electroanal. Chem. 155, 117 (1981)Google Scholar
  75. 75.
    E.S.S. Iyer, A. Datta, J. Phys. Chem. B 8707, 115 (2011)Google Scholar
  76. 76.
    R. Brimblecombe, J. Chen, P. Wagner, T. Buchhorn, G.C. Dismukes, L. Spiccia, G.F. Swiegers, J. Mol. Cat. A Chem. 1, 338 (2011)Google Scholar
  77. 77.
    G.J. Yao, A. Kira, M. Kaneko, J. Chem. Soc. Faraday Trans. 1 84, 4451 (1988)Google Scholar
  78. 78.
    M.E.G. Lyons, G.P. Keeley, Sensors 1791, 6 (2006)Google Scholar
  79. 79.
    I. Streeter, G.G. Wildgoose, L. Shao, R.G. Compton, Sensors Actuators B 462, 133 (2008)Google Scholar
  80. 80.
    M. Chicharro, A. Sanchez, E. Bermejo, A. Zapardiel, M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta 84, 543 (2005)Google Scholar
  81. 81.
    J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electroanalysis 225, 14 (2005)Google Scholar
  82. 82.
    B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 153, 307 (1999)Google Scholar
  83. 83.
    J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 1706, 85 (2000)Google Scholar
  84. 84.
    E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power. Sources 822, 97–98 (2001)Google Scholar
  85. 85.
    E. Frackowiak, F. Beguin, Carbon 937, 39 (2001)Google Scholar
  86. 86.
    J. Prabhuram, T.S. Zhao, Z.X. Liane, R. Chen, Electrochim. Acta 2649, 52 (2007)Google Scholar
  87. 87.
    J.S. Ye, H.F. Cui, Y. Wen, W.D. Zhang, G.Q. Xu, F.S. Sheu, Microchim. Acta 267, 152 (2006)Google Scholar
  88. 88.
    G.P. Jin, Y.F. Ding, P.P. Zheng, J. Power. Sources 80, 166 (2007)Google Scholar
  89. 89.
    M.E.G. Lyons, G.P. Keeley, Chem. Commun. 2529 (2008)Google Scholar
  90. 90.
    D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.P. Briand, M. Prato, A. Bianco, J. Am. Chem. Soc. 6160, 125 (2003)Google Scholar
  91. 91.
    J. Qu, H. Chen, S. Dong, Electroanalysis 2410, 20 (2008)Google Scholar
  92. 92.
    J.P. Singh, X.G. Zhang, H.-L. Li, A. Singh, R.N. Singh, Int. J. Electrochem. Sci. 416, 3 (2008)Google Scholar
  93. 93.
    B.M. Quinn, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 6146, 127 (2005)Google Scholar
  94. 94.
    B. Unnikrishnan, Y. Umasankar, S.-M. Chen, C.-C. Ti, Int. J. Electrochem. Sci. 3047, 7 (2012)Google Scholar
  95. 95.
    M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. (2013). doi:10.1021/ja4027715 Google Scholar
  96. 96.
    M.E.G. Lyons, L.D. Burke, J. Electroanal. Chem. 377, 170 (1984)Google Scholar
  97. 97.
    P. Aldebert, B. Dreyfus, G. Gebel, N. Nakamura, M. Pineri, F. Volino, J. Phys. Fr. 2101, 49 (1988)Google Scholar
  98. 98.
    N. Girault, P. Aldebert, M. Pineri, P. Audebert, Synth. Met. 277, 38 (1990)Google Scholar
  99. 99.
    R.A. Robinson, R.H. Stokes, Electrolyte solutions (Butterworth, London, 1965), p. 492Google Scholar
  100. 100.
    D. Cibrev, M. Jankulovska, T. Lana-Villarreal, R. Gomez, Int. J. Hyd. Energy 2746, 38 (2013)Google Scholar
  101. 101.
    H. Willems, A.G.C. Kobussen, J.H.W. De Wit, G.H.J. Broers, J. Electroanal. Chem. 227, 170 (1984)Google Scholar
  102. 102.
    A.G.C. Kobussen, G.H.J. Broers, J. Electroanal. Chem. 221, 126 (1981)Google Scholar
  103. 103.
    J. Rossmeisl, A. Logadottir, J.K. Norskov, Chem. Phys. 178, 315 (2005)Google Scholar
  104. 104.
    J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 83, 607 (2007)Google Scholar
  105. 105.
    X. Shen, Y.A. Small, J. Wang, P.B. Allen, M.V. Fernandez-Serra, M.S. Hybertsen, J.T. Muckerman, J. Phys. Chem. C 13695, 114 (2010)Google Scholar
  106. 106.
    M. Busch, E. Ahlberg, I. Panas, Phys. Chem. Chem. Phys. 15069, 13 (2011)Google Scholar
  107. 107.
    L.-P. Wang, Q. Wu, T. Van Voorhis, Inorg. Chem. 4543(49) (2010)Google Scholar
  108. 108.
    K.A. Mauritz, R.B. Moore, Chem. Rev. 4535, 104 (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Trinity Electrochemical Energy Conversion & Electrocatalysis (TEECE) Group, School of Chemistry & CRANNTrinity College DublinDublinIreland

Personalised recommendations