Advertisement

Electrocatalysis

, Volume 5, Issue 1, pp 41–49 | Cite as

NiMnOx/C: A Non-noble Ethanol-Tolerant Catalyst for Oxygen Reduction in Alkaline Exchange Membrane DEFC

  • Amanda C. GarciaEmail author
  • Jose J. Linares
  • Marian Chatenet
  • Edson A. Ticianelli
Article

Abstract

A non-noble oxygen reduction catalyst based on nickel−manganese oxide supported on high-surface area carbon has been synthesized by a mild hydrothermal treatment, resulting in nanocrystalline needles. Cyclic voltammetry showed the electrochemical redox characteristics of this material, evidencing the appearance of peaks associated to consecutive reversible transitions involving Mn(IV)/Mn(III) and Mn(III)/Mn(II). The catalyst displayed a high activity for the oxygen reduction, despite that the complete reduction was not achieved, consuming less than three electrons of the four available in the oxygen molecule. More importantly, this activity did not decay under the presence of ethanol, revealing the high ethanol tolerance of this material. Finally, single-cell results have demonstrated the suitability of this material as cathode catalysts for alkaline DEFC: The open circuit voltage and the maximum power densities are close to those obtained by a standard Pt/C catalyst.

Keywords

Alkaline direct ethanol fuel cell Ethanol tolerance Oxygen reduction reaction Nickel-doped manganese oxides 

Notes

Acknowledgments

The Authors thank process n. 2010/07108-3 São Paulo Research Foundation (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ( CAPES/COFECUB-Ph 598/08 project) for financial supports. In particular, José J. Linares thanks FAPESP for a post-doctoral fellowship (Proc. 2010/07108-3). Funding by French National Research Agency (ANR) and German Federal Ministry for Education and Research (BMBF) through the Project "Efficient Use of Bio-ethanol in Fuel Cells (EUBECELL) as part of the “Program Inter Carnot Fraunhofer (PICF)” is also gratefully acknowledged.

References

  1. 1.
    K. Kinoshita, Electrochemical oxygen technology (Willey, New York, 1992)Google Scholar
  2. 2.
    T.R. Ralph, M.P. Hogarth, Platin Met. Rev. 3, 46 (2002)Google Scholar
  3. 3.
    R. Parsons, T. VanderNoot, J. Electroanal. Chem. 9, 257 (1998)Google Scholar
  4. 4.
    A.M. Castro Luna, A. Bonesi, W.E. Triaca, A. Di Blasi, A. Stassi, V. Baglio, V. Antonucci, A.S. Aricò, J Nanoparticle Res. 12, 357 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Kuver, W. Vielstich, J. Power, Sources 74, 211 (1998)CrossRefGoogle Scholar
  6. 6.
    V.A. Sethuraman, J.W. Weidner, A.T. Haug, L.V. Protsailo, J. Electrochem. Soc. 155, B119 (2008)CrossRefGoogle Scholar
  7. 7.
    D.E. Curtin, R.D. Lousenberg, T.J. Henry, P.C. Tangeman, M.E. Tisack, J. Power, Sources 131, 41 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, Q. Xin, Electochim. Acta 49, 1045 (2004)CrossRefGoogle Scholar
  9. 9.
    K. Ramya, K.S. Dhathathreyan, J. Electroanal. Chem. 542, 109 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Electrochim. Acta 52, 3910 (2007)CrossRefGoogle Scholar
  11. 11.
    X. Yu, S. Ye, J. Power, Sources 11, 145 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Sun, M. Delucchi, J. Ogden, Int. J. Hydrogen Energy 36, 11116 (2011)CrossRefGoogle Scholar
  13. 13.
    I. Staffell, R. Green, Int. J. Hydrogen Energy 38, 1088 (2013)CrossRefGoogle Scholar
  14. 14.
    T. Takakuwa, M. Akiyoshi, T. Kenko, M. Saito, H. Daimon, A. Tasaka, M. Inaba, H. Shiroishi, T. Hatai, J. Kuwano, ECS Trans. 41, 2185 (2011)Google Scholar
  15. 15.
    Q. Wen, S. Wang, J. Yan, L. Cong, Z. Pan, Y. Ren, Z. Fan, J. Power, Sources 216, 187 (2012)CrossRefGoogle Scholar
  16. 16.
    R.B. Valim, M.C. Santos, M.R.V. Lanza, S.A.S. Machado, F.H.B. Lima, M.L. Calegaro, Electrochim. Acta 85, 423 (2012)CrossRefGoogle Scholar
  17. 17.
    A.C. Garcia, F.H.B. Lima, E.A. Ticianelli, M. Chatenet, J. Power, Sources 222, 305 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Bezdicka, T. Grygar, B. Klápste, J. Vondrák, Electrochim. Acta 45, 913 (1999)CrossRefGoogle Scholar
  19. 19.
    A.C. Garcia, A.D. Herrera, E.A. Ticianelli, M. Chatenet, C. Poinsignon, J. Electrochem. Soc. 158, B290 (2011)CrossRefGoogle Scholar
  20. 20.
    J.P. Hoare, The electrochemistry of oxygen (John Wiley & Sons, New York, 1968), p. 19Google Scholar
  21. 21.
    A.J. Bard, L.R. Faulkner, Electrochimie—Principles (Méthodes et Applications, Masson, Paris, 1983)Google Scholar
  22. 22.
    L.F. Hiemke, The influence of reactant gas solubility on flooded fuel cells. B. Sc. Thesis, MIT, 1991Google Scholar
  23. 23.
    M. Chatenet, M. Aurousseau, R. Durand, Electrochim. Acta 45, 2823 (2000)CrossRefGoogle Scholar
  24. 24.
    M. Chatenet, M. Aurousseau, R. Durand, Comparative methods for gas diffusivity and solubility determination in extreme media: Application to molecular oxygen in an industrial chlorine-soda electrolyte. Ind. Eng. Chem. Res. 39, 3083 (2000)CrossRefGoogle Scholar
  25. 25.
    P. Han, D.M. Bartels, J. Phys. Chem. 100, 5597 (1996)CrossRefGoogle Scholar
  26. 26.
    M. Chatenet, M.B. Molina-Concha, N. El-Kissi, G. Parrour, J.-P. Diard, Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochim. Acta 54, 4426 (2009)CrossRefGoogle Scholar
  27. 27.
    W.H. Baur, Acta Crystallogr. B 32, 2200 (1976)CrossRefGoogle Scholar
  28. 28.
    S. Geller, Acta Crystallogr. B 27, 821 (1971)CrossRefGoogle Scholar
  29. 29.
    S. Sasaki, K. Fujino, Y. Takeuchi, Proc. Jpn Acad. 55, 43 (1979)CrossRefGoogle Scholar
  30. 30.
    M. Yousug, P.C. Sahy, H.K. Jajoo, S. Rajagopalan, K. Govinda Rajan, J. Phys. F 16, 373 (1986)CrossRefGoogle Scholar
  31. 31.
    L. Li, K. Scott, E.H. Yu, J. Power, Sources 221, 1 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, Y. Hu, S. Li, J. Sun, B. Hou, J. Power, Sources 22, 9284 (2011)CrossRefGoogle Scholar
  33. 33.
    I. Roche, E. Chainet, M. Chatenet, J. Vondrák, J. Phys. Chem. C 111, 1434 (2007)CrossRefGoogle Scholar
  34. 34.
    F.H.B. Lima, M.L. Calegaro, E.A. Ticianelli, J. Electroanal. Chem. 590, 152 (2006)CrossRefGoogle Scholar
  35. 35.
    J. Vondràk, B. Klápštĕ, J. Velická, M. Sedlaříková, V. Novàk, J. Reiter, J New Mater. Electrochem. Syst. 8, 1 (2005)Google Scholar
  36. 36.
    I. Roche, K. Scott, J. Electroanal. Chem. 638, 280 (2010)CrossRefGoogle Scholar
  37. 37.
    K. Kinoshita, Carbon, electrochemical and physicochemical properties (John Wiley & Sons, New York, 1988)Google Scholar
  38. 38.
    A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V. Ya, Filimonov. J. Power. Sources 188, 502 (2009)CrossRefGoogle Scholar
  39. 39.
    H. Hou, G. Sun, R. He, Z. Wu, B. Sun, J. Power, Sources 182, 95 (2008)CrossRefGoogle Scholar
  40. 40.
    H. Hou, S. Wang, Q. Jiang, W. Jin, L. Jiang, G. Sun, J. Power. Sources 196, 3244 (2011)CrossRefGoogle Scholar
  41. 41.
    L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Int. J. Hydrogen Energy 37, 14536 (2012)CrossRefGoogle Scholar
  42. 42.
    L. Ma, D. Chu, R. Chen, Int. J. Hydrogen Energy 37, 11185 (2012)CrossRefGoogle Scholar
  43. 43.
    L. Jiang, A. Hsu, D. Chu, R. Chen, Int. J. Hydrogen Energy 35, 365 (2010)CrossRefGoogle Scholar
  44. 44.
    H. Hou, G. Sun, R. He, B. Sun, W. Jin, H. Liu, Q. Xin, Int. J. Hydrogen Energy 33, 7172 (2008)Google Scholar
  45. 45.
    F. Colmati, E. Antolini, E.R. Gonzalez, J. Power, Sources 157, 98 (2006)CrossRefGoogle Scholar
  46. 46.
    J.J. Linares, T.A. Rocha, S. Zignani, V.A. Paganin, E.R. Gonzalez, Int. J. Hydrogen Energy 38, 620 (2013)CrossRefGoogle Scholar
  47. 47.
    V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, J. Appl. Electrochem. 26, 297 (1996)CrossRefGoogle Scholar
  48. 48.
    H. Hou, S. Wang, H. Liu, L. Sun, W. Jin, M. Jing, L. Jiang, G. Sun, Int. J. Hydrogen Energy 36, 11955 (2011)CrossRefGoogle Scholar
  49. 49.
    I. Roche, E. Chainet, J. Vondrak, M. Chatenet, J. Appl. Electrochem. 38, 1195 (2008)CrossRefGoogle Scholar
  50. 50.
    A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 43, 119 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amanda C. Garcia
    • 1
    Email author
  • Jose J. Linares
    • 2
  • Marian Chatenet
    • 3
  • Edson A. Ticianelli
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Laboratoire d’Electrochimie et de Physico-chimie des Matériaux et des Interfaces LEPMIUMR 5279 CNRS/Grenoble-INP/Université de Savoie/Université Joseph FourierSaint Martin d’HèresFrance

Personalised recommendations