Advertisement

Electrocatalysis

, Volume 5, Issue 1, pp 5–7 | Cite as

Immobilization-Enabled Proton Reduction Catalysis by a Di-iron Hydrogenase Mimic

  • Jean Sanabria-Chinchilla
  • Alnald Javier
  • Danielle Crouthers
  • Jack H. Baricuatro
  • Marcetta Y. Darensbourg
  • Manuel P. Soriaga
Article

We have long been interested in the influence of surface immobilization on the electrochemical integrity of redox-active moieties [1, 2, 3, 4, 5]. Our studies have shown that, if the electroactive group itself is directly chemisorbed on (coordinated to) the electrode surface, profound alterations result in both the thermodynamics and kinetics of the electron transfer processes; the oxidative chemisorption of the iodide anion (to zerovalent iodine atoms) or the hydroquinone molecule (to benzoquinone) are prototypical examples. The changes are more subtle and less dramatic if the electroactive site is only a pendant moiety tethered to the surface via an anchor group; mercapto hydroquinone bound exclusively via the –SH group is a well-known specimen. We recently extended our investigations to include enzyme-inspired molecular electrocatalysts in which the multinuclear reactive site may require a certain entatic state to carry out its catalytic function; the anticipation is that the...

Keywords

PPh3 Hydrogen Evolution Reaction Iodine Atom Anchor Group Mercapto Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: The electrocatalysis work was supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993; the synthesis and characterization of the di-iron complexes were supported by the National Science Foundation (CHE-0616695) (MYD) and the Texas A&M University-CONACYT program (MPS).

References

  1. 1.
    J.E. Soto, D. Li, J. Sanabria, M.P. Soriaga, J. Mol. Struct. 890, 298 (2008)CrossRefGoogle Scholar
  2. 2.
    M. P. Soriaga, in Frontiers of Electrochemistry. Structure of Electrified Interfaces, ed. by P. N. Ross, J. Lipkowski (VCH: New York, 1993), Chapter 4Google Scholar
  3. 3.
    M.P. Soriaga, Chem. Rev. 90, 771 (1990)CrossRefGoogle Scholar
  4. 4.
    M.E. Bothwell, M.P. Soriaga, J. Electroanal. Chem. 260, 193 (1989)CrossRefGoogle Scholar
  5. 5.
    M.P. Soriaga, E. Binamira-Soriaga, A.T. Hubbard, J.B. Benziger, K.W.P. Pang, Inorg. Chem. 24, 65 (1985)CrossRefGoogle Scholar
  6. 6.
    A.M. Kluwera, R. Kaprea, F. Hartla, M. Lutzb, A.L. Spekb, A.M. Brouwera, P.W.N.M. van Leeuwena, J.N.H. Reeka, PNAS. 106, 10460 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Chatt, J. R. Dilworth, J. A. Schmutz, J. A. Zubieta. J. Chem. Soc. Dalton Trans. (1979) 1595.Google Scholar
  8. 8.
    J. Clavilier, J. Electroanal. Chem. 107, 205 (1980)CrossRefGoogle Scholar
  9. 9.
    D. Chong, I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M. P. Soriaga, M. Y. Darensbourg. J. Chem. Soc. Dalton Trans. 4158 (2003).Google Scholar
  10. 10.
    Panida Surawatanawong, Jesse W. Tye, Marcetta Y. Darensbourg and Michael B. Hall. Dalton Trans. 39 (2010) 3093.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jean Sanabria-Chinchilla
    • 1
  • Alnald Javier
    • 1
    • 2
  • Danielle Crouthers
    • 2
  • Jack H. Baricuatro
    • 1
  • Marcetta Y. Darensbourg
    • 2
  • Manuel P. Soriaga
    • 1
    • 2
  1. 1.Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations