, Volume 4, Issue 4, pp 203–211 | Cite as

Reduction of Nitrate Ions at Rh-Modified Ni Foam Electrodes

  • Enrico Verlato
  • Sandro Cattarin
  • Nicola Comisso
  • Luca Mattarozzi
  • Marco MusianiEmail author
  • Lourdes Vázquez-Gómez


Commercial Ni foams were modified by spontaneous deposition of Rh nanoparticles, achieved by immersion of foam samples in acid, deaerated Na3RhCl6 solutions, at open circuit. The surface area of the Rh deposits was estimated, for different Rh loadings, by measuring the H adsorption/desorption charge. The surface area per unit Rh mass was found to exceed 50 m2 g−1, for loading values below 2 mg cm−3. The Rh-modified Ni foam electrodes were used as cathodes for the reduction of nitrate ions, and showed good catalytic activity, increasing with the Rh loading in a sublinear way; thus, the mass activity of the electrodes was higher at low loading. Prolonged electrolyses showed that the Rh-modified Ni foam electrodes underwent only moderate poisoning. Ion chromatography was used to assess the reaction products: irrespective of the Rh loading, ammonia was the main product, and nitrite accounted only for a few percent of the reduced nitrate. The beneficial effect of forcing a solution flow through the foam pores on the nitrate reduction current was shown.


3D cathode Degradation of pollutants Electrocatalysis Porous electrode Spontaneous deposition 



The authors gratefully acknowledge the financial support of the Italian Ministry for Economic Development (MSE),MSE-CNR Agreement on National Electrical System.


  1. 1.
    R.E. Sioda, Electrochim. Acta. 13, 1559 (1968)CrossRefGoogle Scholar
  2. 2.
    R. Alkire, B. Gracon, J. Electrochem. Soc. 122, 1594 (1975)CrossRefGoogle Scholar
  3. 3.
    R.J. Marshall, F.C. Walsh, Surf. Technol. 24, 45 (1985)CrossRefGoogle Scholar
  4. 4.
    J.M. Marracino, F. Coeuret, S. Langlois, Electrochim. Acta 32, 1303 (1987)CrossRefGoogle Scholar
  5. 5.
    J. González–Garcia, V. Montiel, A. Aldaz, J.A. Conesa, J.R. Pérez, G. Codina, Ind. Eng. Chem. Res. 37, 4501 (1998)CrossRefGoogle Scholar
  6. 6.
    R. Menini, Y.M. Henuset, J. Fournier, J. Appl. Electrochem. 35, 625 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Matlosz, J. Newman, J. Electrochem. Soc. 133, 1850 (1986)CrossRefGoogle Scholar
  8. 8.
    J.M. Friedrich, C. Ponce–de–León, G.W. Reade, F.C. Walsh, Electroanal. Chem. 561, 203 (2004)CrossRefGoogle Scholar
  9. 9.
    B.K. Ferreira, Miner. Process. Ext. Metall. Rev. 29, 330 (2008)CrossRefGoogle Scholar
  10. 10.
    I. Sirés, E. Brillas, Environ. Int. 40, 212 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli, Appl. Catal. B Environ. 70, 479 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Muff, C.D. Andersen, R. Erichsen, E.G. Soegaard, Electrochim. Acta 54, 2062 (2009)CrossRefGoogle Scholar
  13. 13.
    J.M. Skowronski, A. Wazny, J. Sol. Struct. Electrochem. 9, 890 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, J. Power Sources 160, 1420 (2006)CrossRefGoogle Scholar
  15. 15.
    W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Electrochim. Acta 52, 9 (2006)CrossRefGoogle Scholar
  16. 16.
    F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, N.P. Brandon, Int. J. Hydrogen Energy 34, 6799 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, N.P. Brandon, Int. J. Hydrogen Energy 35, 1783 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.-L. Wang, Y.-Q. Zhao, C.-L. Xu, D.-D. Zhao, M.-W. Xu, Z.-X. Su, H.-L. Li, J. Power Sources 195, 6496 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Yamauchi, M. Kumatsu, A. Takai, R. Sebata, M. Sawada, T. Momma, M. Fuziwara, T. Osaka, K. Kuroda, Electrochim. Acta 53, 604 (2007)CrossRefGoogle Scholar
  20. 20.
    D. Cao, Y. Guo, G. Wang, R. Miao, Y. Liu, Int. J. Hydrogen Energy 35, 807 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Cheng, Y. Liu, D. Cao, G. Wang, Y. Gao, J. Power Sources 196, 3124 (2011)CrossRefGoogle Scholar
  22. 22.
    J.M. Skowronski, A. Czerwinski, T. Rozmanowski, Z. Rogulski, P. Krawczyk, Electrochim. Acta 52, 5677 (2007)CrossRefGoogle Scholar
  23. 23.
    B. Yang, G. Yu, D. Shuai, Chemosphere 67, 1361 (2007)CrossRefGoogle Scholar
  24. 24.
    B. Yang, G. Yu, J. Huang, Environ. Sci. Technol. 41, 7503 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Verlato, S. Cattarin, N. Comisso, A. Gambirasi, M. Musiani, L. Vázquez–Gómez, Electrocatalysis 3, 48 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Fiameni, I. Herraiz–Cardona, M. Musiani, V. Pérez–Herranz, L. Vázquez–Gómez, E. Verlato, Int. J. Hydrogen Energy 37, 10507 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Li, D.H. Robertson, J.Q. Chambers, D.T. Hobbs, J. Electrochem. Soc. 135, 1154 (1988)CrossRefGoogle Scholar
  28. 28.
    H. Li, D.H. Robertson, J.Q. Chambers, D.T. Hobbs, J. Appl. Electrochem. 18, 454 (1988)CrossRefGoogle Scholar
  29. 29.
    G.E. Dima, A.C.A. de Vooys, M.T.M. Koper, J. Electroanal. Chem. 554–555, 15 (2003)CrossRefGoogle Scholar
  30. 30.
    O. Brylev, M. Sarrazin, D. Bélanger, L. Roué, Appl. Catal., B 64, 243 (2006)CrossRefGoogle Scholar
  31. 31.
    O. Brylev, M. Sarrazin, L. Roué, D. Bélanger, Electrochim. Acta 52, 6237 (2007)CrossRefGoogle Scholar
  32. 32.
    P.M. Tucker, M.J. Waite, B.E. Hayden, J. Appl. Electrochem. 34, 781 (2007)CrossRefGoogle Scholar
  33. 33.
    V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Chem. Rev. 109, 2209 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Duca, B. van der Klugt, M.A. Hasnat, M. Machida, M.T.M. Koper, J. Catal. 275, 61 (2010)CrossRefGoogle Scholar
  35. 35.
    N. Comisso, S. Cattarin, S. Fiameni, R. Gerbasi, L. Mattarozzi, M. Musiani, L. Vázquez- Gómez, E. Verlato, Electrochem. Comm. 25, 91 (2012)Google Scholar
  36. 36.
    L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez, E. Verlato, Electrochim. Acta 89, 488 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Cimino, L. Lisi, G. Mancino, M. Musiani, L. Vázquez–Gómez, E. Verlato, Int. J. Hydrogen Energy 37, 17040 (2012)CrossRefGoogle Scholar
  38. 38.
    E. Benguerel, G.P. Demopoulos, G.B. Harris, Hydrometallurgy 40, 135 (1996)CrossRefGoogle Scholar
  39. 39.
    R. Woods, Chemisorption at electrodes: hydrogen and oxygen on noble metals and their alloys, in Electroanalytical Chemistry, ed. by A.J. Bard, vol. 9 (Marcel Dekker, New York, 1976), p. 1Google Scholar
  40. 40.
    B. Conway, in Impedance Spectroscopy, ed. by E. Barsoukov, J.R. Macdonal (Wiley, Hoboken, 2005), pp. 469Google Scholar
  41. 41.
    J.D. Genders, D. Hartsough, D.T. Hobbs, J. Appl. Electrochem. 26, 1 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enrico Verlato
    • 1
  • Sandro Cattarin
    • 1
  • Nicola Comisso
    • 1
  • Luca Mattarozzi
    • 1
  • Marco Musiani
    • 1
    Email author
  • Lourdes Vázquez-Gómez
    • 1
  1. 1.IENI CNRPaduaItaly

Personalised recommendations