, Volume 4, Issue 1, pp 24–36 | Cite as

Catalytic Performance Comparison of Shape-Dependent Nanocrystals and Oriented Ultrathin Films of Pt4Cu Alloy in the Formic Acid Oxidation Process

  • L. Bromberg
  • M. Fayette
  • B. Martens
  • Z. P. Luo
  • Y. Wang
  • D. Xu
  • J. Zhang
  • J. Fang
  • N. Dimitrov


Research efforts continue to focus on the development of viable and cost-effective fuel cell catalysts with minimized Pt content. This work presents a comparative study between Pt4Cu nanocubes and nano-octahedra as well as Pt4Cu (100) and (111) thin films used as catalysts for formic acid oxidation. This paper introduces a novel synthetic method for Pt4Cu nano-octahedra, and it also demonstrates for the first time the use of surface limited redox replacement of Pb underpotentially deposited layer for epitaxial growth of thin alloy films. Overall, the nanoparticle catalysts exhibit superior performance in terms of durability when compared to their thin film counterparts but feature nearly fivefold lower activity. As a result, it was determined that both types of catalysts accumulate nearly equal charge density in their lifespan. In terms of crystallographic orientation, the results indicate that the nanocubes and Pt4Cu (100) thin films outperform the nano-octahedra and Pt4Cu (111) thin films in terms of durability but feature equal to slightly lower activity. This significant difference in durability of catalysts with different crystallographic orientation is attributed to interplay of passivation (from CO poisoning and Pt oxidation) and dissolution of Pt. When compared to pure Pt catalysts (nanoparticles and thin films), all of the Pt4Cu catalysts in this work exhibit superior performance toward formic acid oxidation in terms of activity and durability.


PtCu alloy Formic acid oxidation Fuel cells Catalyst Activity Durability 



L.B., M.F., and N.D. acknowledge the financial support of the National Science Foundation, Division of Materials Research (DMR-0742016). L.B. acknowledges the financial support of the Clifford D. Clark Fellowship, Y.W and J.F. acknowledge the financial support of General Motor LLC., and B.M., J.Z., D.X., and J.F. acknowledge the financial support of NSF DMR-0731382.

Supplementary material

12678_2012_109_MOESM1_ESM.docx (2.6 mb)
ESM 1 Supporting information item. (DOCX 2663 kb)


  1. 1.
    E. Antolini, Mater Chem Phys 78, 563 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Fayette, Y. Liu, D. Bertrand, J. Nutariya, N. Vasiljevic, N. Dimitrov, Langmuir 27, 5650 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Uosaki, S. Ye, H. Naohara, Y. Oda, T. Haba, T. Kondo, J Phys Chem B 101, 7566 (1997)CrossRefGoogle Scholar
  4. 4.
    A.D. Polli, T. Wagner, T. Gemming, M. Rühle, Surf Sci 448, 279 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Solla-Gullon, P. Rodriguez, E. Herrero, A. Aldaz, J.M. Feliu, Phys Chem Chem Phys: PCCP 10, 1359 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Rice, R.I. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J Power Sources 111, 83 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J Power Sources 155, 95 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Lamy, S. Rousseau, E. Belgsir, C. Coutanceau, J. Leger, Electrochim Acta 49, 3901 (2004)CrossRefGoogle Scholar
  9. 9.
    W. Weihua, T. Xuelin, C. Kai, C. Gengyu, Coll Surf A: Phys Chem Eng Asp 273, 35 (2006)CrossRefGoogle Scholar
  10. 10.
    T. He, E. Kreidler, L. Xiong, E. Ding, J Power Sources 165, 87 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Yang, L. Dai, D. Xu, J. Fang, S. Zou, Electrochim Acta 55, 8000 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Xu, S. Bliznakov, Z. Liu, J. Fang, N. Dimitrov, Andgew Chem 49, 1282 (2010)Google Scholar
  13. 13.
    P. Strasser, J Comb Chem 10, 216 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Oezaslan, P. Strasser, J Power Sources 196, 5240 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Hasche, M. Oezaslan, P. Strasser, ChemCatChem 3, 1805 (2011)Google Scholar
  16. 16.
    J. Zeng, J. Lee, J Power Sources 140, 268 (2005)CrossRefGoogle Scholar
  17. 17.
    T.C. Deivaraj, W. Chen, J.Y. Lee, J Mater Chem 13, 2555 (2003)CrossRefGoogle Scholar
  18. 18.
    B. Pawelec, S. Damyanova, K. Arishtirova, J.L.G. Fierro, L. Petrov, Appl. Cat. A 323, 188 (2007)CrossRefGoogle Scholar
  19. 19.
    Y.W. Lee, A.R. Ko, S.B. Han, H.S. Kim, K.W. Park, Phys Chem Chem Phys: PCCP 13, 5569 (2011)CrossRefGoogle Scholar
  20. 20.
    V. Petkov, S.D. Shastri, Phys Rev B, 81, 165428 (2010)Google Scholar
  21. 21.
    R. Yang, J. Leisch, P. Strasser, M.F. Toney, Chem Mater 22, 4712 (2010)CrossRefGoogle Scholar
  22. 22.
    J.J. Mallett, U. Bertocci, J.E. Bonevich, T.P. Moffat, J Electrochem Soc 156, D531 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Rose, J Magn Magn Mater 155, 348 (1996)CrossRefGoogle Scholar
  24. 24.
    D. van der Vliet, C. Wang, M. Debe, R. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Electrochim Acta 56, 8695 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Solla-Gullón, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, A. Aldaz, Elchem Commun 8, 189 (2006)Google Scholar
  26. 26.
    S.-C. Chang, L.-W.H. Leung, M.J. Weaver, J Phys Chem 94, 6013 (1990)CrossRefGoogle Scholar
  27. 27.
    N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., X. Jiange, I. Villegas, M.J. Weaver, Electrochim Acta 40, 91 (1995)CrossRefGoogle Scholar
  28. 28.
    R. Parsons, T. Vandernoot, J Electroanal Chem 257, 9 (1988)CrossRefGoogle Scholar
  29. 29.
    S.G. Sun, J. Clavilier, A. Bewick, J Electroanal Chem 240, 147 (1988)CrossRefGoogle Scholar
  30. 30.
    J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic, J Phys Chem B 109, 22701 (2005)CrossRefGoogle Scholar
  31. 31.
    H.-F. Waibel, M. Kleinert, L.A. Kibler, D.M. Kolb, Electrochim Acta 47, 1461 (2002)CrossRefGoogle Scholar
  32. 32.
    K.A. Friedrich, A. Marmann, U. Stimming, W. Unkauf, R. Vogel, J. Fresenius Anal Chem 358, 163 (1997)CrossRefGoogle Scholar
  33. 33.
    S. Strbac, S. Petrovic, R. Vasilic, J. Kovac, A. Zalar, Z. Rakocevic, Electrochim Acta 53, 998 (2007)CrossRefGoogle Scholar
  34. 34.
    S.R. Brankovic, J.X. Wang, R.R. Adzic, Surf Sci 474, L173 (2001)CrossRefGoogle Scholar
  35. 35.
    R. Vasilic, N. Dimitrov, Elchem Sol St Lett 8, C173 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Vasilic, L.T. Viyannalage, N. Dimitrov, J Electrochem Soc 153, C648 (2006)CrossRefGoogle Scholar
  37. 37.
    L.T. Viyannalage, R. Vasilic, N. Dimitrov, J Phys Chem C 111, 4036 (2007)CrossRefGoogle Scholar
  38. 38.
    M.F. Mrozek, Y. Xie, M.J. Weaver, Anal Chem 73, 5953 (2001)CrossRefGoogle Scholar
  39. 39.
    Y. Jin, Y. Shen, S. Dong, J Phys Chem B 108, 8142 (2004)CrossRefGoogle Scholar
  40. 40.
    Y.G. Kim, J.Y. Kim, D. Vairavapandian, J.L. Stickney, J Phys Chem B 110, 17998 (2006)CrossRefGoogle Scholar
  41. 41.
    D. Gokcen, S.-E. Bae, S.R. Brankovic, J Electrochem Soc 157, D582 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Gokcen, S.-E. Bae, S.R. Brankovic, Electrochim Acta 56, 5545 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Yang, N.Y. Park, J.W. Han, C. Kim, S.C. Lee, H. Lee, Chem Commun 48, 257 (2012)CrossRefGoogle Scholar
  44. 44.
    V. Mazumder, S. Sun, J Am Chem Soc 131, 4588 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Zhang, H.Z. Yang, K.K. Yang, J. Fang, S.Z. Zou, Z.P. Luo, H. Wang, I.T. Bae, D.Y. Jung, Adv Funct Mater 20, 3727 (2010)CrossRefGoogle Scholar
  46. 46.
    J. Zhang, J. Fang, J Am Chem Soc 131, 18543 (2009)CrossRefGoogle Scholar
  47. 47.
    D. Strmcnik, D. Tripkovic, D. van der Vliet, V. Stamenkovic, N.M. Marković, Elchem Commun 10, 1602 (2008)Google Scholar
  48. 48.
    B.N. Grgur, N.M. Markovic, C.A. Lucas, P.N. Ross, J Serb Chem Soc 66, 785 (2001)Google Scholar
  49. 49.
    A.B. Ofstad, M.S. Thomassen, J.L. Gomez de la Fuente, F. Seland, S. Møller-Holst, S. Sunde, J Electrochem Soc 157, B621 (2010)CrossRefGoogle Scholar
  50. 50.
    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J Electrochem Soc 152, A2256 (2005)CrossRefGoogle Scholar
  51. 51.
    X. Wang, R. Kumar, D.J. Myers, Elchem Sol St Lett 9, A225 (2006)CrossRefGoogle Scholar
  52. 52.
    X. Zhang, H.M. Galindo, H.F. Garces, P. Baker, X. Wang, U. Pasaogullari, S.L. Suib, T. Molter, J Electrochem Soc 157, B409 (2010)CrossRefGoogle Scholar
  53. 53.
    X. Ge, R. Wang, P. Liu, Y. Ding, Chem Mater 19, 5827 (2007)CrossRefGoogle Scholar
  54. 54.
    D.A. McCurry, M. Kamundi, M. Fayette, F. Wafula, N. Dimitrov, ACS Appl Mater Interfaces 3, 4459 (2011)CrossRefGoogle Scholar
  55. 55.
    J.M. Feliu, J.M. Orts, R. Gomez, A. Aldaz, J. Clavilier, J Electroanal Chem 372, 265 (1994)CrossRefGoogle Scholar
  56. 56.
    N.M. Markovic, B.N. Grgur, P.N. Ross, J Phys Chem B 101, 5405 (1997)CrossRefGoogle Scholar
  57. 57.
    F.J.G. d Dios, R. Gomez, J.M. Feliu, Langmuir 21, 7439 (2005)CrossRefGoogle Scholar
  58. 58.
    N. Garcia-Araez, J.J. Lukkien, M.T.M. Koper, J.M. Feliu, J Electroanal Chem 588, 1 (2006)CrossRefGoogle Scholar
  59. 59.
    N. de-los-Santos-Álvarez, L.R. Alden, E. Rus, H. Wang, F.J. DiSalvo, H.D. Abruña, J Electroanal Chem 626, 14 (2009)CrossRefGoogle Scholar
  60. 60.
    S.-M. Hwang, J.E. Bonevich, J.J. Kim, T.P. Moffat, J Electrochem Soc 158, D307 (2011)CrossRefGoogle Scholar
  61. 61.
    K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim Acta 53, 3181 (2008)CrossRefGoogle Scholar
  62. 62.
    K. Kinoshita, J Electrochem Soc 137, 845 (1990)CrossRefGoogle Scholar
  63. 63.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Science 315, 493 (2007)CrossRefGoogle Scholar
  64. 64.
    D.C. Johnson, D.T. Napp, S. Bruckenstein, Electrochim Acta 15, 1493 (1970)CrossRefGoogle Scholar
  65. 65.
    D.A.J. Rand, R. Woods, J Electroanal Chem 35, 209 (1972)CrossRefGoogle Scholar
  66. 66.
    A. Yadav, A. Nishikata, T. Tsuru, Electrochim Acta 52, 7444 (2007)CrossRefGoogle Scholar
  67. 67.
    S. Mitsushima, Y. Koizumi, S. Uzuka, K.-I. Ota, Electrochim Acta 54, 455 (2008)CrossRefGoogle Scholar
  68. 68.
    S. Mitsushima, S. Kawahara, K.-I. Ota, N. Kamiya, J Electrochem Soc 154, B153 (2007)CrossRefGoogle Scholar
  69. 69.
    V. Komanicky, K.C. Chang, A. Menzel, N.M. Markovic, H. You, X. Wang, D. Myers, J Electrochem Soc 153, B446 (2006)CrossRefGoogle Scholar
  70. 70.
    A. Capon, R. Parsons, J Electroanal Chem 45, 205 (1973)CrossRefGoogle Scholar
  71. 71.
    A. Cuesta, G. Cabello, C. Gutierrez, M. Osawa, Phys Chem Chem Phys: PCCP 13, 20091 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • L. Bromberg
    • 1
  • M. Fayette
    • 1
  • B. Martens
    • 2
  • Z. P. Luo
    • 3
    • 4
  • Y. Wang
    • 2
  • D. Xu
    • 1
  • J. Zhang
    • 1
  • J. Fang
    • 1
  • N. Dimitrov
    • 1
  1. 1.Department of ChemistryState University of New York at BinghamtonBinghamtonUSA
  2. 2.Materials Science & Engineering ProgramState University of New York at BinghamtonBinghamtonUSA
  3. 3.Microscopy and Imaging Center and Materials Science and Engineering ProgramTexas A&M UniversityCollege StationUSA
  4. 4.Department of Chemistry and PhysicsFayetteville State UniversityFayettevilleUSA

Personalised recommendations