, Volume 3, Issue 3–4, pp 192–202 | Cite as

Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts

  • Jeffrey A. Herron
  • Jiao Jiao
  • Konstanze Hahn
  • Guowen Peng
  • Radoslav R. Adzic
  • Manos Mavrikakis


Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O2 dissociation and two hydrogen-assisted routes of O–O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O–O bond-breaking steps leads to a “volcano” relation between the surfaces’ activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.


Density functional theory Oxygen reduction Operating potential Layered metal structures Sabatier analysis Activity 



JH, JJ, KH, GP, and MM dedicate this paper to the landmark occasion of the 70th birthday of Dr. Radoslav R. Adzic. They all feel privileged to have had the opportunity to collaborate with him and be inspired by his influential ideas in the field of electrocatalysis, and wish him the very best on his birthday. Work at UW-Madison was supported by DOE-BES, Division of Chemical Sciences. JAH thanks Air Products & Chemicals, Inc. for a graduate fellowship. JJ thanks Drs. A. U. Nilekar and P. A. Ferrin for help at the initial phase of her work in this project. The computational work was performed in part using supercomputing resources from the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. CNM, NCCS, and ORNL are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357, DEAC05-00OR22725, and DE-AC02-05CH11231, respectively.


  1. 1.
    J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44(14), 2132–2135 (2005)CrossRefGoogle Scholar
  2. 2.
    M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic, Platinum monolayer electrocatalysts for oxygen reduction. Electrochim. Acta 52(6), 2257–2263 (2007)CrossRefGoogle Scholar
  3. 3.
    R.R. Adzic, J.X. Wang, Configuration and site of O2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. B 102(45), 8988–8993 (1998)CrossRefGoogle Scholar
  4. 4.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)CrossRefGoogle Scholar
  5. 5.
    J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108(13), 4127–4133 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108(30), 10955–10964 (2004)CrossRefGoogle Scholar
  7. 7.
    R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107), 63–66 (2006)CrossRefGoogle Scholar
  8. 8.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809), 220–222 (2007)CrossRefGoogle Scholar
  10. 10.
    A.U. Nilekar, Y. Xu, J.L. Zhang, M.B. Vukmirovic, K. Sasaki, R.R. Adzic, M. Mavrikakis, Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46(3–4), 276–284 (2007)CrossRefGoogle Scholar
  11. 11.
    M.H. Shao, K. Sasaki, P. Liu, R.R. Adzic, Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction. Z. Phys Chem. Int. J. Res. Phys. Chem. Chem. Phys. 221(9), 1175–1190 (2007)Google Scholar
  12. 12.
    C.T. Campbell, Bimetallic surface-chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990)CrossRefGoogle Scholar
  13. 13.
    N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45(4–6), 121–229 (2002)Google Scholar
  14. 14.
    J. Greeley, M. Mavrikakis, Alloy catalysts designed from first principles. Nat. Mater. 3(11), 810–815 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Bronsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224(1), 206–217 (2004)CrossRefGoogle Scholar
  16. 16.
    A.U. Nilekar, M. Mavrikakis, Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf. Sci. 602(14), L89–L94 (2008)CrossRefGoogle Scholar
  17. 17.
    W.P. Zhou, X.F. Yang, M.B. Vukmirovic, B.E. Koel, J. Jiao, G.W. Peng, M. Mavrikakis, R.R. Adzic, Improving electrocatalysts for O-2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J. Am. Chem. Soc. 131(35), 12755–12762 (2009)CrossRefGoogle Scholar
  18. 18.
    V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128(27), 8813–8819 (2006)CrossRefGoogle Scholar
  19. 19.
    P. Hirunsit, P.B. Balbuena, Stability of Pt monolayers on Ir-Co Cores with and without a Pd interlayer. J. Phys. Chem. C 114(30), 13055–13060 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Greeley, J.K. Nørskov, Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations. Electrochim. Acta 52(19), 5829–5836 (2007)CrossRefGoogle Scholar
  21. 21.
    P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112(7), 2770–2778 (2008)CrossRefGoogle Scholar
  22. 22.
    G.E. Ramirez-Caballero, Y.G. Ma, R. Callejas-Tovar, P.B. Balbuena, Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Phys. Chem. Chem. Phys. 12(9), 2209–2218 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7(4), 333–338 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Grabow, Y. Xu, M. Mavrikakis, Lattice strain effects on CO oxidation on Pt(111). Phys. Chem. Chem. Phys. 8(29), 3369–3374 (2006)CrossRefGoogle Scholar
  25. 25.
    M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81(13), 2819–2822 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52(18), 5512–5516 (2007)CrossRefGoogle Scholar
  27. 27.
    P. Liu, J.K. Nørskov, Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3(17), 3814–3818 (2001)CrossRefGoogle Scholar
  28. 28.
    F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skulason, T. Bligaard, J.K. Nørskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99(1), 016105 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Bronsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112(5), 1308–1311 (2008)CrossRefGoogle Scholar
  30. 30.
    J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis. J. Catal. 209(2), 275–278 (2002)CrossRefGoogle Scholar
  31. 31.
    M. Boudart, Kinetics of chemical processes (Prentice-Hall, Englewood, Cliffs, 1968)Google Scholar
  32. 32.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990)CrossRefGoogle Scholar
  33. 33.
    B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59(11), 7413–7421 (1999)CrossRefGoogle Scholar
  34. 34.
    J. Greeley, J.K. Nørskov, M. Mavrikakis, Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002)CrossRefGoogle Scholar
  35. 35.
    D.J. Chadi, M.L. Cohen, Special points in Brillouin zone. Phys. Rev. B 8(12), 5747–5753 (1973)CrossRefGoogle Scholar
  36. 36.
    P. Ferrin, A.U. Nilekar, J. Greeley, M. Mavrikakis, J. Rossmeisl, Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 602(21), 3424–3431 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Greeley, M. Mavrikakis, A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf. Sci. 540(2–3), 215–229 (2003)CrossRefGoogle Scholar
  38. 38.
    G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)CrossRefGoogle Scholar
  39. 39.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, 1976)Google Scholar
  40. 40.
    W.B. Pearson, Handbook of lattice spacings and structures of metals and alloysGoogle Scholar
  41. 41.
    Because of well-known errors of DFT-GGA with the energetics of gas phase species, the calculated equilibrium potential at 298 K is 1.03 VGoogle Scholar
  42. 42.
    M.T.M. Koper, Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660(2), 254–260 (2011)CrossRefGoogle Scholar
  43. 43.
    J.L. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic, Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 127(36), 12480–12481 (2005)CrossRefGoogle Scholar
  44. 44.
    J. Greeley, J.K. Nørskov, Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J. Phys. Chem. C 113(12), 4932–4939 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009)CrossRefGoogle Scholar
  46. 46.
    S.L. Knupp, M.B. Vukmirovic, P. Haldar, J.A. Herron, M. Mavrikakis, R.A. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr. Electrocatalysis 1(4), 213–223 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jeffrey A. Herron
    • 1
  • Jiao Jiao
    • 1
  • Konstanze Hahn
    • 1
  • Guowen Peng
    • 1
  • Radoslav R. Adzic
    • 2
  • Manos Mavrikakis
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin—MadisonMadisonUSA
  2. 2.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations