Advertisement

Electrocatalysis

, Volume 3, Issue 3–4, pp 360–368 | Cite as

Intrinsic Potential-Dependent Performances of a Sol–Gel-Prepared Electrocatalytic IrO2–TiO2 Coating of Dimensionally Stable Anodes

  • Branislav Ž. NikolićEmail author
  • Vladimir V. Panić
  • Aleksandar B. Dekanski
Article

Abstract

The electrochemical properties of a sol–gel-prepared IrO2–TiO2 coating on Ti were investigated from the standpoint of the charging/discharging behavior in 1.0°mol dm−3 H2SO4 and in 0.50°mol dm−3 NaCl, pH 2. The potential-dependent changes from low oxidation states of Ir, with low activity, to those of higher activity (enhanced pseudocapacitive performances) were analyzed at different charging/discharging rates by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed the distribution of Ir oxidation states through the coating, with lower ones being placed largely in the internal, hardly accessible, parts of the coating. The transition to higher oxidation states appears as crucial for the full development of pseudocapacitive performances. This transition occurs much easier in the NaCl than in the H2SO4 solution, since the potentials of redox transitions of Ir are much closer due to lower hydrogen ion concentration in NaCl solution. As a consequence, a unique overall coating capacitance was registered in both solutions.

Keywords

Oxide sols Sol–gel procedure Porous coatings Noble metal oxides Pseudocapacitance Transmission line Electrochemical impedance spectroscopy 

Notes

Acknowledgments

The authors acknowledge the financial support of the Ministry of Education and Science of the Republic of Serbia, contract no. 172060.

References

  1. 1.
    S. Trasatti, in Interfacial Electrochemistry—Theory, Experiment and Applications, ed by A. Wieckowski (Marcel Dekker, New York, 1999), p. 769Google Scholar
  2. 2.
    S. Trasatti, W.E. O’Grady, in Advance in Electrochemistry and Electrochemical Engineering, Vol. 12, ed by H. Gerisher, C. W. Tobias (Wiley, New York, 1982), p.177Google Scholar
  3. 3.
    S. Trasatti, Electrochim. Acta 45, 2377 (2000)CrossRefGoogle Scholar
  4. 4.
    L.M. Gajić-Krstajić, T.L. Trišović, N.V. Krstajić, Corr. Sci. 46, 65 (2004)CrossRefGoogle Scholar
  5. 5.
    V. Jovanović, A. Dekanski, P. Despotov, B. Nikolić, R. Atanasoski, J. Electroanal. Chem. 339, 147 (1992)CrossRefGoogle Scholar
  6. 6.
    V. Panić, A. Dekanski, V.B. Mišković-Stanković, S. Milonjić, B. Nikolić, J. Electroanal. Chem. 579, 67 (2005)CrossRefGoogle Scholar
  7. 7.
    S.M. Hoseinieh, F. Ashrafizadeh, M.H. Maddahi, J. Electrochem. Soc. 157, E50 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Tamura, C. Iwakura, Int. J. Hydrogen Energy 7, 857 (1982)CrossRefGoogle Scholar
  9. 9.
    V.V. Gorodetskii, V.A. Neburchilov, V.I. Alyab’eva, Russ, J. Electrochem. 41, 1111 (2005)Google Scholar
  10. 10.
    T.-X. Cai, H. Chen, H. Ju, L.-N. Lu, Corr. Prot. 27, 522 (2006)Google Scholar
  11. 11.
    S. Trasatti, Electrochim. Acta 36, 225 (1991)CrossRefGoogle Scholar
  12. 12.
    V.A. Alves, L.A. Silva, J.F.C. Boodts, J. Appl. Electrochem. 28, 899 (1998)CrossRefGoogle Scholar
  13. 13.
    L.M. Da Silva, L.A. De Faria, J.F.C. Boodts, J. Electroanal. Chem. 532, 141 (2002)CrossRefGoogle Scholar
  14. 14.
    A.J. Terezo, J. Bisquert, E.C. Pereira, G. Garcia-Belmonte, J. Electroanal. Chem. 508, 59 (2001)CrossRefGoogle Scholar
  15. 15.
    V.V. Panić, B.Ž. Nikolić, J. Serb. Chem. Soc. 72, 1393 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 35, 263 (1990)CrossRefGoogle Scholar
  17. 17.
    V. Panić, A. Dekanski, S. Milonjić, R. Atanasoski, B. Nikolić, Electrochim. Acta 46, 415 (2000)CrossRefGoogle Scholar
  18. 18.
    V.V. Panić, B.Ž. Nikolić, J. Serb. Chem. Soc. 73, 1083 (2008)CrossRefGoogle Scholar
  19. 19.
    V. Panić, A. Dekanski, M. Mitrić, S.K. Milonjić, V.B. Mišković-Stanković, B.Ž. Nikolić, Phys. Chem. Chem. Phys. 12, 7521 (2010)Google Scholar
  20. 20.
    V.V. Panić, A.B. Dekanski, V.B. Mišković-Stanković, S.K. Milonjić, B.Ž. Nikolić, J. Serb. Chem. Soc. 75, 1413 (2010)CrossRefGoogle Scholar
  21. 21.
    Th Pauporté, R. Durand, J. Appl. Electrochem. 30, 35 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Hackwood, W.C. Dautremont-Smith, G. Beni, L.M. Schiavone, J.L. Shay, J. Electrochem. Soc. 128, 1212 (1981)CrossRefGoogle Scholar
  23. 23.
    D. Johnson, ZView, version 2.6. (Scribner Associates Inc., 1990-2002), http://www.scribner.com/general-electrochemistry-software.html. Accessed 22 Feb 2012
  24. 24.
    O.R. Camara, S. Trasatti, Electrochim. Acta 41, 419 (1996)CrossRefGoogle Scholar
  25. 25.
    H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C 111, 227 (2007)CrossRefGoogle Scholar
  26. 26.
    C.-M. Wu, C.-Y. Fan, I.-W. Sun, W.-T. Tsai, J.-K. Chang, J. Power. Sources 196, 7828 (2011)CrossRefGoogle Scholar
  27. 27.
    V.V. Panić, T.R. Vidaković, A.B. Dekanski, V.B. Mišković-Stanković, B.Ž. Nikolić, J. Electroanal. Chem. 609, 120 (2007)CrossRefGoogle Scholar
  28. 28.
    V.V. Panić, R.M. Stevanović, V.M. Jovanović, A.B. Dekanski, J. Power. Sources 181, 186 (2008)CrossRefGoogle Scholar
  29. 29.
    C. Bock, V.I. Birss, J. Electroanal. Chem. 475, 20 (1999)CrossRefGoogle Scholar
  30. 30.
    V. Panić, T. Vidaković, S. Gojković, A. Dekanski, S. Milonjić, B. Nikolić, Electrochim. Acta 48, 3789 (2003)CrossRefGoogle Scholar
  31. 31.
    B. Aurian-Blajeni, X. Beebe, R.D. Rauth, T.L. Rose, Electrochim. Acta 34, 795 (1989)CrossRefGoogle Scholar
  32. 32.
    J. Backholm, P. Georén, G.A. Niklasson, J. Appl. Phys. 103, 023702 (2008)CrossRefGoogle Scholar
  33. 33.
    W.H. Mulder, J.H. Sluytes, T. Pajkossy, I. Nyikos, J. Electroanal. Chem. 285, 103 (1990)CrossRefGoogle Scholar
  34. 34.
    G.A. Niklasson, S. Malmgren, S. Green, J. Backholm, J. Non-Crystall. Solids 356, 705 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Branislav Ž. Nikolić
    • 1
    Email author
  • Vladimir V. Panić
    • 2
  • Aleksandar B. Dekanski
    • 2
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.ICTM–Department of ElectrochemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations