Electrocatalysis

, Volume 3, Issue 1, pp 39–47 | Cite as

New Cell for DEMS Applicable to Different Electrode Sizes

  • Abd-El-Aziz A. Abd-El-Latif
  • Jie Xu
  • Nicky Bogolowski
  • Peter Königshoven
  • Helmut Baltruschat
Article

Abstract

Present approaches to use simple crystal electrodes for DEMS have certain disadvantages: Thin layer cells with defined diffusion and/or convection require large single discs of 1 cm diameter; also, a part of the crystal surface has to be pressed against a spacer. Other approaches, which allow the use of small bead crystals, have the disadvantage of ill-defined mass transport from the surface into the vacuum of the mass spectrometer. Here, we present a new approach which combines the advantage of defined convection of one dual thin layer cell with the possibility to use small bead crystals. The usual hanging meniscus is replaced by a cone-shaped capillary, through which electrolyte is flowing to a thin layer mass spectrometric detection compartment. In order to ensure a stable hanging meniscus at the electrode, the electrolyte level is maintained at constant height with the help of a second electrolyte pump adjusted to the same electrolyte flow as that sucked through the capillary. We demonstrate the quality of single-crystal voltammetry in this arrangement and its use for the examination of formic acid and methanol oxidation on Pt(100), Pt(15 1 1), and Pt(711). Current efficiencies for CO2 during methanol oxidation were also determined.

Keywords

DEMS cell Bead single-crystal electrode Hanging meniscus Methanol oxidation Electrochemical mass spectrometry 

References

  1. 1.
    R.R. Bruckenstein, J. Gadde, J Am Chem Soc 93, 793 (1971)CrossRefGoogle Scholar
  2. 2.
    O. Wolter, J. Heitbaum, Ber. Bunsenges. Phys. Chem. 88, 2 (1984)Google Scholar
  3. 3.
    O. Wolter, J. Heitbaum, Ber. Bunsenges. Phys. Chem. 88, 6 (1984)Google Scholar
  4. 4.
    H. Baltruschat, J Am Soc Mass Spectrom 15, 1693 (2004)CrossRefGoogle Scholar
  5. 5.
    T. Hartung, H. Baltruschat, Langmuir 6, 953 (1990)CrossRefGoogle Scholar
  6. 6.
    T. Hartung, U. Schmiemann, I. Kamphausen, H. Baltruschat, Anal Chem 63, 44 (1991)CrossRefGoogle Scholar
  7. 7.
    H. Baltruschat, U. Schmiemann, Ber. Bunsenges. Phys. Chem. 97, 452 (1993)Google Scholar
  8. 8.
    Z. Jusys, H. Massong, H. Baltruschat, J Electrochem Soc 146, 1093 (1999)CrossRefGoogle Scholar
  9. 9.
    Z. Jusys, J. Kaiser, R.J. Behm, Electrochim Acta 47, 3693 (2002)CrossRefGoogle Scholar
  10. 10.
    S.P.E. Smith, E. Casado-Rivera, H.D. Abruna, J. Solid State Electrochem. 7, 582 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Wang, E. Rus, H.D. Abruna, Anal Chem 82, 4319 (2010)CrossRefGoogle Scholar
  12. 12.
    R.G. Compton, B.A. Coles, A.C. Fisher, J Phys Chem 98, 2441 (1994)CrossRefGoogle Scholar
  13. 13.
    R.G. Compton, B.A. Coles, J.J. Gooding, A.C. Fisher, T.I. Cox, J Phys Chem 98, 2446 (1994)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, H. Tsuji, H. Hattori, H. Kita, J Electroanal Chem 372, 195 (1994)CrossRefGoogle Scholar
  15. 15.
    A.H. Wonders, T.H.M. Housmans, V. Rosca, M.T.M. Koper, J Appl Electrochem 36, 1215 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Wasberg, G. Horanyi, J Electroanal Chem 381, 151 (1995)CrossRefGoogle Scholar
  17. 17.
    M. Bergelin, J.M. Feliu, M. Wasberg, Electrochim Acta 44, 1069 (1998)CrossRefGoogle Scholar
  18. 18.
    M. Bergelin, M. Wasberg, J Electroanal Chem 449, 181 (1998)CrossRefGoogle Scholar
  19. 19.
    H. Baltruschat, in Interfacial Electrochemistry, ed. by A. Wieckowski (Marcel Dekker, Inc, New York, 1999), p. 577Google Scholar
  20. 20.
    Z. Jusys, R.J. Behm, J Phys Chem B 105, 10874 (2001)CrossRefGoogle Scholar
  21. 21.
    K. Kunimatsu, J Electroanal Chem 213, 149 (1986)CrossRefGoogle Scholar
  22. 22.
    J. Clavilier, J Electroanal Chem 236, 87 (1987)CrossRefGoogle Scholar
  23. 23.
    S.-C. Chang, L.-W.H. Leung, M.J. Weaver, J Phys Chem 94, 6013 (1990)CrossRefGoogle Scholar
  24. 24.
    V. Grozovski, V. Climent, E. Herrero, J.M. Feliu, Chemphyschem 10, 1922 (2009)CrossRefGoogle Scholar
  25. 25.
    L.A. Kibler, A. Cuesta, M. Kleinert, D.M. Kolb, J Electroanal Chem 484, 73 (2000)CrossRefGoogle Scholar
  26. 26.
    P. Strasser, M. Lubke, F. Raspel, M. Eiswirth, G. Ertl, J Chem Phys 107, 979 (1997)CrossRefGoogle Scholar
  27. 27.
    K. Krischer, N. Mazouz, P. Grauel, Angew Chem Int Ed 40, 851 (2001)CrossRefGoogle Scholar
  28. 28.
    I.C. Yeh, M.L. Berkowitz, J Electroanal Chem 450, 313 (1998)CrossRefGoogle Scholar
  29. 29.
    H.S. Wang, C. Wingender, H. Baltruschat, M. Lopez, M.T. Reetz, J Electroanal Chem 509, 163 (2001)CrossRefGoogle Scholar
  30. 30.
    H. Wang, T. Löffler, H. Baltruschat, J Appl Electrochem 31, 759 (2001)CrossRefGoogle Scholar
  31. 31.
    A. A. Abd-El-Latif and H. Baltruschat (2011) Journal of Electroanalytical Chemistry (in press)Google Scholar
  32. 32.
    A.A. Abd-El-Latif, E. Mostafa, S. Huxter, G. Attard, H. Baltruschat, Electrochim Acta 55, 7951 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Abd-El-Aziz A. Abd-El-Latif
    • 1
    • 2
  • Jie Xu
    • 1
    • 3
  • Nicky Bogolowski
    • 1
  • Peter Königshoven
    • 1
  • Helmut Baltruschat
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryUniversity of BonnBonnGermany
  2. 2.National Research Centre, Electrochemistry and Corrosion DepartmentCairoEgypt
  3. 3.Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations