Electrocatalysis

, 2:207 | Cite as

Determining the Active Surface Area for Various Platinum Electrodes

  • Dong Chen
  • Qian Tao
  • Ling Wen Liao
  • Shao Xiong Liu
  • Yan Xia Chen
  • Shen Ye
Article

Abstract

Various methods, i.e., the adsorption/stripping of adsorbed probe species, such as hydrogen (H), copper (Cu), and carbon monoxide (CO), oxygen and hydroxide (O/OH), potentiostatic CO/H displacement as well as double layer capacitance are exploited to evaluate the electrochemically active surface areas (ECAs) of platinum (Pt) foils, chemically deposited Pt thin film, and carbon-supported Pt nanoparticle electrodes. For the relatively smooth Pt electrodes (roughness factor < 3), the measurements from the stripping of H, Cu, and CO adlayers and CO/H displacement at 0.08 V (vs. RHE) give similar ECAs. With the increase of the surface roughness, it was found that the ECAs deduced from the different methods have the order of CO/H displacement less than the stripping of under potential deposition (UPD) Cu monolayer less than the stripping of the UPD-H adlayer. Possible origins for the discrepancies as well as the applicability of all the abovementioned methods for determining ECAs of various Pt electrodes are discussed, and the UPD-Cu method is found to be the most appropriate technique for the determination of ECAs of Pt electrodes with high roughness factors or composed of nanoparticles with high dispersion.

Keywords

Pt electrocatalysts Electrochemically active surface areas (ECAs) Under potential deposition (UPD) Voltammetric stripping Adsorbed hydrogen (H) UPD-Cu CO displacement method CO adsorption 

References

  1. 1.
    R. Parsons, T. VanderNoot, The oxidation of small organic molecules: a survey of recent fuel cell related research. J. Electroanal. Chem. 257, 9 (1988)CrossRefGoogle Scholar
  2. 2.
    A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38, 445 (1997)CrossRefGoogle Scholar
  3. 3.
    N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117 (2002)CrossRefGoogle Scholar
  4. 4.
    W. Vielstich, A. Lamm, H.A. Gasteiger, in Handbook of fuel cells, vol. 2, chap 21 and references cited therein, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Chichester 2003)Google Scholar
  5. 5.
    S. Trasatti, O.A. Petrii, Real surface-area measurements in electrochemistry. J. Electroanal. Chem. 327, 353 (1992)CrossRefGoogle Scholar
  6. 6.
    G. Jerkiewicz, Electrochemical hydrogen adsorption and absorption. Part 1: under-potential deposition of hydrogen. Electrocatal 1, 179 (2010)CrossRefGoogle Scholar
  7. 7.
    R.W. Lindstrom, Y.E. Seidel, Z. Jusys, M. Gustavsson, B. Wickman, B. Kasemo, R.J. Behm, Electrocatalysis and transport effects on nanostructured Pt/GC electrodes. J. Electroanal. Chem. 644, 90 (2010)CrossRefGoogle Scholar
  8. 8.
    M.J. Watt-Smith, J.M. Friedrich, S.P. Rigby, T.R. Ralph, F.C. Walsh, Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D Appl. Phys. 41, 174004 (2008)CrossRefGoogle Scholar
  9. 9.
    R.W. Lindstrom, K. Kortsdottir, M. Wesselmark, A. Oyarce, C. Lagergren, G. Lindbergh, Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: temperature and humidity effect. J. Electrochem. Soc. 157, 1795 (2010)CrossRefGoogle Scholar
  10. 10.
    Q.S. Chen, J. Solla-Gullon, S.G. Sun, J.M. Feliu, The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure. The role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982 (2010)CrossRefGoogle Scholar
  11. 11.
    C.L. Green, A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Nagel, N. Bogolowski, H. Baltruschat, Towards a determination of the active surface area of polycrystalline and nanoparticle electrodes by Cu upd and CO oxidation. J. Appl. Electrochem. 36, 1297 (2006)CrossRefGoogle Scholar
  13. 13.
    K. Kinoshita, P.N. Ross, Oxide stability and chemisorption properties of supported ruthenium electrocatalysts. J. Electroanal. Chem. 78, 313 (1977)CrossRefGoogle Scholar
  14. 14.
    A. Cuesta, A. Couto, A. Rincon, M.C. Perez, A. Lopez-Cudero, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J. Electroanal. Chem. 586, 184 (2006)CrossRefGoogle Scholar
  15. 15.
    Y. Morimoto, E.B. Yeager, CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes. J. Electroanal. Chem. 441, 77 (1998)CrossRefGoogle Scholar
  16. 16.
    T.J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. Bonnemann, Electrocatalytic activity of PtRu alloy colloids for CO and CO/H-2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir 13, 2591 (1997)CrossRefGoogle Scholar
  17. 17.
    E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897 (2001)CrossRefGoogle Scholar
  18. 18.
    E. Leiva, Recent developments in the theory of metal upd. Electrochim. Acta 41, 2185 (1996)CrossRefGoogle Scholar
  19. 19.
    M.C. Tavares, S.A.S. Machado, L.H. Mazo, Study of hydrogen evolution reaction in acid medium on Pt micro electrodes. Electrochim. Acta 46, 4359 (2001)CrossRefGoogle Scholar
  20. 20.
    Z. Jusys, R.J. Behm, Methanol oxidation on a carbon-supported Pt fuel cell catalyst - a kinetic and mechanistic study by differential electrochemical mass spectrometry. J. Phys. Chem. B 105, 10874 (2001)CrossRefGoogle Scholar
  21. 21.
    Z. Radovic-Hrapovic, G. Jerkiewicz, The temperature dependence of the cyclic-voltammetry response for the Pt(110) electrode in aqueous H2SO4 solution. J. Electroanal. Chem. 499, 61 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Zolfaghari, G. Jerkiewicz, The temperature dependence of hydrogen and anion adsorption at a Pt(100) electrode in aqueous H2SO4 solution. J. Electroanal. Chem. 420, 11 (1997)CrossRefGoogle Scholar
  23. 23.
    A. Zolfaghari, G. Jerkiewicz, New findings on hydrogen and anion adsorption at a Pt(111) electrode in aqueous H2SO4 solution generated by temperature variation. J. Electroanal. Chem. 422, 1 (1997)CrossRefGoogle Scholar
  24. 24.
    R. Gomez, J.M. Orts, B. Alvarez-Ruiz, J.M. Feliu, Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4. J. Phys. Chem. B 108, 228 (2004)CrossRefGoogle Scholar
  25. 25.
    A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. 14, 1500 (2002)CrossRefGoogle Scholar
  26. 26.
    Y.X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 125, 3680 (2003)CrossRefGoogle Scholar
  27. 27.
    Y.X. Chen, S. Ye, M. Heinen, Z. Jusys, M. Osawa, R.J. Behm, Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures. J. Phys. Chem. B 110, 9534 (2006)CrossRefGoogle Scholar
  28. 28.
    K. Kunimatsu, H. Uchida, M. Osawa, M. Watanabe, In situ infrared spectroscopic and electrochemical study of hydrogen electrooxidation on Pt electrode in sulfuric acid. J. Electroanal. Chem. 587, 299 (2006)CrossRefGoogle Scholar
  29. 29.
    Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Kinetics and mechanism of the electrooxidation of formic acid - spectroelectrochemical studies in a flow cell. Angew. Chem. Int. Edit. 45, 981 (2006)CrossRefGoogle Scholar
  30. 30.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354 (1998)CrossRefGoogle Scholar
  31. 31.
    B.E. Conway, H. Angerstein-Kozlowska, W.B.A. Sharp, E.E. Criddle, Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal. Chem. 45, 1331 (1973)CrossRefGoogle Scholar
  32. 32.
    T. Biegler, R. Woods, Limiting oxygen coverage on smooth platinum anodes in acid solution. J. Electroanal. Chem. 20, 73 (1969)CrossRefGoogle Scholar
  33. 33.
    G. Jerkiewicz, G. Tremiliosi-Filho, B.E. Conway, Significance of the apparent limit of anodic oxide film formation at Pt: saturation coverage by the quasi two-dimensional state. J. Electroanal. Chem. 334, 359 (1992)CrossRefGoogle Scholar
  34. 34.
    R. Gomez, J.M. Feliu, A. Aldaz, M.J. Weaver, Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. Surf. Sci. 410, 48 (1998)CrossRefGoogle Scholar
  35. 35.
    B.E. Conway, Electrochemical oxide film formation at noble-metals as a surface-chemical process. Prog. Surf. Sci. 49, 331 (1995)CrossRefGoogle Scholar
  36. 36.
    B.E. Conway, The electrochemical study of multiple-state adsorption in monolayers. Acc. Chem. Res. 14, 49 (1981)CrossRefGoogle Scholar
  37. 37.
    G.G. Barna, S.N. Frank, T.H. Teherani, A scan rate dependent determination of platinum areas. J. Electrochem. Soc. 129, 746 (1982)CrossRefGoogle Scholar
  38. 38.
    C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry (Wiley-VCH, New York, 2007), p. 75Google Scholar
  39. 39.
    R. Gomez, H.S. Yee, G.M. Bommarito, J.M. Feliu, H.D. Abruna, Anion effects and the mechanism of Cu Upd on Pt(111) - x-ray and electrochemical studies. Surf. Sci. 335, 101 (1995)CrossRefGoogle Scholar
  40. 40.
    J.M. Orts, R. Gomez, J.M. Feliu, A. Aldaz, J. Clavilier, Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodes-acidic electrolytes with specific anion adsorption. Electrochim. Acta 39, 1519 (1994)CrossRefGoogle Scholar
  41. 41.
    J.M. Feliu, J.M. Orts, R. Gomez, A. Aldaz, J. Clavilier, New information on the unusual adsorption states of Pt(111) in sulfuric-acid-solutions from potentiostatic adsorbate replacement by CO. J. Electroanal. Chem. 372, 265 (1994)CrossRefGoogle Scholar
  42. 42.
    A. Lopez-Cudero, A. Cuesta, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100). J. Electroanal. Chem. 586, 204 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127, 6819 (2005)CrossRefGoogle Scholar
  44. 44.
    K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochim. Acta 54, 5018 (2009)CrossRefGoogle Scholar
  45. 45.
    W.G. Pell, A. Zolfaghari, B.E. Conway, Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surfaceoxide film. J. Electroanal. Chem. 532, 13 (2002)CrossRefGoogle Scholar
  46. 46.
    E.I. Khrushcheva, M.R. Tarasevich, Electrochemical determination of surface area of metals. Russ. Chem. Rev. 47, 416 (1978)Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Dong Chen
    • 1
  • Qian Tao
    • 1
  • Ling Wen Liao
    • 1
  • Shao Xiong Liu
    • 1
  • Yan Xia Chen
    • 1
  • Shen Ye
    • 2
  1. 1.Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Catalysis Research CenterHokkaido UniversitySapporoJapan

Personalised recommendations