Electrocatalysis

, Volume 1, Issue 4, pp 213–223 | Cite as

Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles

  • Seth L. Knupp
  • Miomir B. Vukmirovic
  • Pradeep Haldar
  • Jeffrey A. Herron
  • Manos Mavrikakis
  • Radoslav R. Adzic
Article

Abstract

The kinetics of oxygen reduction was investigated in acid solutions on Pt monolayers deposited on modified carbon-supported PdIr nanoparticles using the rotating disk-electrode technique. Iridium is introduced into the Pd substrate in order to fine-tune the Pt–Pd interactions and to improve Pd stability under operating conditions of the fuel cell. The kinetics of the oxygen reduction reaction shows enhancement with the Pt monolayer on the PdIr nanoparticle surfaces in comparison with the reaction on Pt/C and Pt monolayer on Pd/C nanoparticles. The electrochemical measurements suggest that reduced oxidation of Pt monolayer on PdIr/C compared to Pt/C and Pt monolayer on Pd/C is the cause of enhanced activity. Besides a ligand effect induced to the Pt surface by the presence of PdIr in the second sublayer of the nanoparticle, as suggested by our density functional theory analysis, Ir also leads to a Pd skin contraction, so the Pt monolayer on PdIr/C is compressed more than on Pd/C. Both effects lead to further weakening of the Pt–OH interaction, thus increasing the ORR activity. The Pt-specific activity for PtMLPdIr/C is three times and 25% higher than that of Pt/C and PtMLPd/C respectively; the Pt-mass activity of PtMLPdIr/C is more than 20 times and 25% higher than that of Pt/C and PtMLPd/C, respectively.

Keywords

Core-shell PEM fuel cell ORR Copper UPD 

Notes

Acknowledgments

Work at BNL was supported by US Department of Energy, Divisions of Chemical and Material Sciences, under the contract no. DE-AC02-98CH10886. Work at CNSE was supported by New York State Foundation for Science, Technology and Academic Research. Work at UW-Madison was supported by DOE-BES, Chemical Sciences. CPU time was utilized at facilities located at ANL, PNNL, ORNL, and NERSC, all supported by the DOE. The authors would like to thank Dr. Juntao Li and Dr. Sei Hirigashi for their assistance obtaining TEM/EDS and TGA data respectively at CNSE.

References

  1. 1.
    Vielstich W, Lamm A, Gasteiger H (2004) Hand book of fuel cells. John Wiley & Sons Inc, pp 1–57Google Scholar
  2. 2.
    R. Bashyam, P. Zelenay, Nature 443, 63 (2006)CrossRefGoogle Scholar
  3. 3.
    H. Gasteiger, J. Panels, S. Yan, J. Power Sources. 127(1–2), 162 (2004)CrossRefGoogle Scholar
  4. 4.
    J. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, J. Phys. Chem. B. 108(46), 17886 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Wang, N. Markovic, R. Adzic, J. Phys. Chem. B. 108, 4127 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Adzic, Frontiers in electrochemistry (VCH Publishers, New York, 1998), p. 197Google Scholar
  7. 7.
    S. Mukerjee, S. Srinivasan, M. Soriaga, J. McBreen, J. Phys. Chem. 99, 4577 (1995)CrossRefGoogle Scholar
  8. 8.
    S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 357, 201 (1993)CrossRefGoogle Scholar
  9. 9.
    M. Min, J. Cho, H. Kim, Electrochim. Acta. 45, 4211 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Koh, M. Toney, P. Strasser, Electrochim. Acta. 52, 2765 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Toda, H. Igarashi, M. Watanabe, J. Electroanal. Chem. 460, 258 (1999)CrossRefGoogle Scholar
  12. 12.
    U. Paulus, A. Wokaun, G. Scherer, T. Schmidt, V. Stamenkovic, N. Markovic, P. Ross, Electrochim. Acta. 47, 3787 (2002)CrossRefGoogle Scholar
  13. 13.
    H. Gasteiger, S. Kocha, B. Sompalli, F. Wagner, Appl. Catal. B. – Environ. 56(1–2), 9 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Y. Mo, M. Vukmirovic, R. Kile, K. Sasaki, R. Adzic, J. Phys. Chem. B. 108, 10955 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, F. Lima, M. Shao, K. Sasaki, J. Wang, J. Hanson, R. Adzic, J. Phys. Chem. Lett. B. 109, 22701 (2005)Google Scholar
  16. 16.
    J. Zhang, M. Vukmirovic, K. Sasaki, F. Uribe, R. Adzic, J. Serb. Chem. Soc. 70(3), 513 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Adzic, J. Zhang, K. Sasaki, M. Vukmirovic, M. Shao, J. Wang, A. Nilekar, M. Mavrikakis, J. Valerio, F. Uribe, Top. Catal. 46, 249 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, M. Vukmirovic, Y. Xu, M. Mavrikakis, R. Adzic, Angew. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Vukmirovic, J. Zhang, K. Sasaki, A. Nilekar, F. Uribe, M. Mavrikakis, R. Adzic, Electrochim. Acta. 52, 2257 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Prasanna, R. Srecastava, P. Strasser, J. Phys. Chem. C. 112, 2770 (2008)CrossRefGoogle Scholar
  21. 21.
    N. Aas, M. Bowker, Surface Science 310, 113 (1994)CrossRefGoogle Scholar
  22. 22.
    S. Brankovic, J. Wang, R. Adzic, Surf. Sci. 474, L173 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Greeley, J. Nørskov, Annu. Rev. Phys. Chem. 53, 319 (2002)CrossRefGoogle Scholar
  24. 24.
    B. Hammer, L. Hansen, J. Nørskov, Phys. Rev. B 59, 7413 (1999)CrossRefGoogle Scholar
  25. 25.
    N. Ashcroft, N. Mermin, Solid State Physics (Saunders College, Orlando, FL, 1976), p. 1Google Scholar
  26. 26.
    A. Nilekar, M. Mavrikakis, Surf. Sci. 602, L89 (2008)CrossRefGoogle Scholar
  27. 27.
    J. McBreen, S. Mukerjee, J. Electrochem. Soc. 142, 3399 (1995)CrossRefGoogle Scholar
  28. 28.
    L. Vitos, A. Ruban, H. Skriver, J. Kollar, Surface Science. 411, 186 (1998)CrossRefGoogle Scholar
  29. 29.
    A. Nilekar, A. Ruban, M. Mavrikakis, Surface Science. 603, 91 (2009)CrossRefGoogle Scholar
  30. 30.
    V. Stamenkovic, T. Schmidt, P. Ross, N. Markovic, J. Eletroanal. Chem. 554, 191 (2003)CrossRefGoogle Scholar
  31. 31.
    V. Stamenkovic, B. Mun, J. Mayrhofer, P. Ross, N. Markovic, J Am Chem Soc 128, 8813 (2006)CrossRefGoogle Scholar
  32. 32.
    V. Stamenkovic, T. Schmidt, P. Ross, N. Markovic, J. Phys. Chem. B. 106, 11970 (2002)CrossRefGoogle Scholar
  33. 33.
    Y. Ma, P. Balbuena, Surface Science. 602, 107 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. Vukmirovic, R. Adzic, R. Langmuir. 22, 10409 (2006)CrossRefGoogle Scholar
  35. 35.
    W. Zhou, X. Yang, M. Vukmirovic, B. Keol, J. Jiao, G. Peng, M. Mavirkakis, R. Adzic, J Am Chem Soc 131, 12755 (2009)CrossRefGoogle Scholar
  36. 36.
    L. Kibler, A. El-Aziz, R. Hoyer, D. Kolb, Angew. Chem. Int. Ed. 44, 2080 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Shao, P. Liu, J. Zhang, R. Adzic, J. Phys. Chem. B. 111, 6772 (2007)CrossRefGoogle Scholar
  38. 38.
    N. Anastasijevic, V. Vesocic, R. Adzic, J. Electroanal. Chem. 229, 317 (1987)CrossRefGoogle Scholar
  39. 39.
    D. Lide, R. Ed, CRC handbook of chemistry and physics, 75th edn. (CRC Press, Florida, 1995)Google Scholar
  40. 40.
    B. Hammer, J. Nørskov, Adv. In Catalysis. 45, 71 (2000)CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Seth L. Knupp
    • 1
  • Miomir B. Vukmirovic
    • 2
  • Pradeep Haldar
    • 1
  • Jeffrey A. Herron
    • 3
  • Manos Mavrikakis
    • 3
  • Radoslav R. Adzic
    • 2
  1. 1.College of Nanoscale Science and Engineering, University at AlbanyState University of New YorkAlbanyUSA
  2. 2.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA
  3. 3.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations