Advertisement

Hormones and Cancer

, Volume 10, Issue 4–6, pp 177–189 | Cite as

Downregulation of miR-196-5p Induced by Hypoxia Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma

  • Hao Zheng
  • Feng-rui Bi
  • Yuan Yang
  • Yong-gang Hong
  • Jun-sheng Ni
  • Long Ma
  • Ming-hua Liu
  • Li-qiang Hao
  • Wei-ping ZhouEmail author
  • Li-hua SongEmail author
  • Hong-Li YanEmail author
Original Paper
  • 60 Downloads

Abstract

In hepatocellular carcinoma (HCC), the hypoxic tumor microenvironment can drive enhance tumor malignancy and recurrence. The microRNA (miRNA) miR-196-5p has been shown to modulate the progression of several cancer types, but its roles in HCC remain uncertain. In the present report we observed significant miR-196-5p downregulation in HCC tissues and cells, and we found that the expression of this miRNA significantly impaired the proliferation and metastatic potential of HCC in vitro and in vivo. We identified high-mobility group AT-hook 2 (HMGA2) as a miR-196-5p target gene that was associated with the ability of miR-196-5p to modulate the progression of HCC. Expression of miR-196-5p and HMGA2 were correlated with the clinical characteristics and poor outcomes in patients with HCC. Finally, we found that hypoxic conditions were linked with reduced miR-196-5p expression in the context of HCC. Together these results highlight the role for miR-196-5p as an inhibitor of the proliferation and metastasis of HCC via the targeting of HMGA2, with this novel hypoxia/miR-196-5p/HMGA2 pathway serving as a potential target for future therapeutic intervention.

Keywords

Hepatocellular carcinoma miR-196-5p HMGA2 Biomarker Hypoxia 

Notes

Funding Information

The study was funded by the National Natural Science Foundation of China (NSFC81672350, 81872225); the National Key Basic Research Program of China (grant no. 2014CB542102); The Shanghai Health and Family Planning Commission Foundation (grant no. 20164Y0189); The National Human Genetic Resources Sharing Service Platform (grant no. 2005DKA21300); The Science Fund for Creative Research Groups, NSFC, China (grant no. 81521091); the NewtritionTM Asia Research Grant by BASF and National Natural Science Foundation of China (Grant No. 81672350, 81872225); and The State Key Infection Disease Project of China (grant no. 2017ZX10203208).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12672_2019_370_Fig7_ESM.png (122 kb)
ESM 1

(PNG 121 kb)

12672_2019_370_MOESM1_ESM.tif (1.2 mb)
High resolution image (TIF 1197 kb)
12672_2019_370_Fig8_ESM.png (3.3 mb)
ESM 2

(PNG 3342 kb)

12672_2019_370_MOESM2_ESM.tif (4 mb)
High resolution image (TIF 4133 kb)
12672_2019_370_Fig9_ESM.png (6.7 mb)
ESM 3

(PNG 6869 kb)

12672_2019_370_MOESM3_ESM.tif (8.2 mb)
High resolution image (TIF 8372 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin. 65(1):5–29PubMedGoogle Scholar
  2. 2.
    Mcglynn KA, Petrick JL, London WT (2015) Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 19(2):223–238PubMedPubMedCentralGoogle Scholar
  3. 3.
    Xuan M, Franklin DA, Jiahong D, Yanping Z (2011) MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 74(24):7161–7167Google Scholar
  4. 4.
    Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 3(1):83–92PubMedPubMedCentralGoogle Scholar
  5. 5.
    Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4(6):437–447PubMedGoogle Scholar
  6. 6.
    Chan DA, Sutphin PD, Yen SE, Giaccia AJ (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol. 25(15):6415–6426PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science. 352(6282):175–180PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carrà G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R (2016) Deep sequencing reveals a novel miR-22 regulatory network with therapeutic potential in rhabdomyosarcoma. Cancer Res. 76(20):6095–6106PubMedPubMedCentralGoogle Scholar
  9. 9.
    D'Ippolito E, Plantamura I, Bongiovanni L, Casalini P, Baroni S, Piovan C, Orlandi R, Gualeni AV, Gloghini A, Rossini A, Cresta S, Tessari A, de Braud F, di Leva G, Tripodo C, Iorio MV (2016) miR-9 and miR-200 Regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Res. 76(18):5562–5572PubMedGoogle Scholar
  10. 10.
    Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D, Coppo R, Grassi E, Elia AR, Brusa D, Deaglio S, Brizzi MF, Stadler MB, Provero P, Caselle M, Taverna D (2016) miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res. 76(17):5151–5162PubMedGoogle Scholar
  11. 11.
    Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC, Chang KW (2016) MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76(16):4872–4886PubMedGoogle Scholar
  12. 12.
    Xue J, Zhou A, Wu Y, Morris SA, Lin K, Amin S et al (2016) miR-182-5p induced by stat3 activation promotes glioma tumorigenesis. Cancer Res 76(14):4293PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wen-Ping X, Min Y, Qian-Qian L, Wei-Ping Z, Wen-Ming C, Yuan Y et al (2013) Perturbation of MicroRNA-370/Lin-28 homolog A/nuclear factor kappa B regulatory circuit contributes to the development of hepatocellular carcinoma. Hepatology. 58(6):1977–1991Google Scholar
  14. 14.
    Chen CZ (2007) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 302(1):1–12Google Scholar
  15. 15.
    Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q (2011) MicroRNA-196: critical roles and clinical applications in development and cancer. J Cell Mol Med. 15(1):14–23PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mueller DW, Anja-Katrin B (2011) MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 129(5):1064–1074PubMedGoogle Scholar
  17. 17.
    Andrea T, Amemiya CT, Chang-Bae K, Stadler PF (2005) Evolution of microRNAs located within Hox gene clusters. J Exp Zool B Mol Dev Evol. 304(1):75–85Google Scholar
  18. 18.
    Yae-Eun S, Nina R, Joop GK, Katherine L, Teresa Guerrero U, Jessica B et al (2015) MicroRNA-196a promotes an oncogenic effect in head and neck cancer cells by suppressing annexin A1 and enhancing radioresistance. Int J Cancer. 137(5):1021–1034Google Scholar
  19. 19.
    Lu YC, Chang JT, Liao CT, Kang CJ, Huang SF, Chen IH et al (2014) OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer. 13(1):218PubMedPubMedCentralGoogle Scholar
  20. 20.
    Popovic R, Riesbeck L, Cs CA, Zhang J, Achille N, Erfurth F et al (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113(14):3314PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuo-Wang T, Yu-Lun L, Chew-Wun W, Ling-Yueh H, Sung-Chou L, Wen-Ching C et al (2012) Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer. 51(4):394–401Google Scholar
  22. 22.
    Sun M, Liu XH, Li JH, Yang JS, Zhang EB, Yin DD, Liu ZL, Zhou J, Ding Y, Li SQ, Wang ZX, Cao XF, de W (2012) MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1). Mol Cancer Ther. 11(4):842–852PubMedGoogle Scholar
  23. 23.
    Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW, Lin SC (2013) miR-196a Overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas. Ann Surg Oncol. 20(3):S406–SS14PubMedGoogle Scholar
  24. 24.
    Simone B, Mueller DW, Tanja R, Anja-Katrin B (2010) MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 67(20):3535–3548Google Scholar
  25. 25.
    Yong L, Zhang M, Chen H, Zheng D, Ganapathy V, Thangaraju M et al (2010) Ratio of miR-196s to HOXC8 mRNA correlates with breast cancer cell migration and metastasis. Cancer Res. 70(20):7894–7904Google Scholar
  26. 26.
    Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, Wang SB, Wang YZ, Yang Y, Yang N, Zhou WP, Yang GS, Sun SH (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25(5):666–681PubMedGoogle Scholar
  27. 27.
    Ji-Hang Y, Fu Y, Bi-Feng C, Zhi L, Xi-Song H, Wei-Ping Z et al (2011) The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology. 54(6):2025–2035Google Scholar
  28. 28.
    Ji-Won L, Seong-Hui B, Joo-Won J, Se-Hee K, Kyu-Won K (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 36(1):1–12Google Scholar
  29. 29.
    Jacques P, Frédéric D, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441(7092):437Google Scholar
  30. 30.
    Mcintyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G et al (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76(13):0008-5472.CAN-15-1862Google Scholar
  31. 31.
    Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, Sun X, Li GG, Hu QD, Fu QH, Liang TB (2016) Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 76(4):818–830PubMedGoogle Scholar
  32. 32.
    Muhammad Zaeem N, Bassam J, Shijun H, Wu JC, Fabio M, Vincenzo B et al (2015) Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75(18):3771–3787Google Scholar
  33. 33.
    Yee KM, Vuvi N, Robert L, Darnay BG, Galina K, Mena A et al (2015) Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma. Cancer Res. 75(2):316–329Google Scholar
  34. 34.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297PubMedGoogle Scholar
  35. 35.
    Choi E, Choi E, Hwang KC (2013) MicroRNAs as novel regulators of stem cell fate. World J Stem Cells. 5(4):172–187PubMedPubMedCentralGoogle Scholar
  36. 36.
    Victor A (2004) The functions of animal microRNAs. Nature. 431(7006):350–355Google Scholar
  37. 37.
    Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM (2016) Tissue stiffness and hypoxia modulate the integrin-linked Kinase ILK to control breast cancer stem-like cells. Cancer Res. 76(18):5277–5287PubMedPubMedCentralGoogle Scholar
  38. 38.
    Di MM, Regondi V, Sandri M, Iorio MV, Zanetti A, Tagliabue E et al (2017) Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Lett. 384:94–100Google Scholar
  39. 39.
    Li Q, Zhang C, Chen R, Xiong H, Qiu F, Liu S, Zhang M, Wang F, Wang Y, Zhou X, Xiao G, Wang X, Jiang Q (2016) Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett. 383(1):28–40PubMedGoogle Scholar
  40. 40.
    Gilam A, Conde J, Weissglas-Volkov D, Oliva N, Friedman E, Artzi N et al (2016) Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun. 7:12868PubMedPubMedCentralGoogle Scholar
  41. 41.
    Seviour EG, Sehgal V, Mishra D, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Lee JS, Sood AK, Kim MP, Mills GB, Ram PT (2016) Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis in vivo by clinically significant miR-193a-3p. Oncogene. 36(10):1339–1350PubMedPubMedCentralGoogle Scholar
  42. 42.
    Reeves R, Beckerbauer L (2001) HMGI/Y proteins: flexible regulators of transcription and chromatin structure. BBA - Gene Struct Express. 1519(1):13–29Google Scholar
  43. 43.
    Kloth L, Gottlieb A, Helmke B, Wosniok W, Löning T, Burchardt K, Belge G, Günther K, Bullerdiek J (2015) HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour. J Pathol Clin Res. 1(4):239–251PubMedPubMedCentralGoogle Scholar
  44. 44.
    Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Berghe H, Van Den VWJ, De V (1995) Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet 10(4):436PubMedGoogle Scholar
  45. 45.
    Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X et al (2016) A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76(18):5491–5500PubMedGoogle Scholar
  46. 46.
    Chowdhury R, Leung IKH, Tian YM, Abboud MI, Ge W, Domene C et al (2016) Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun. 7:12673PubMedPubMedCentralGoogle Scholar
  47. 47.
    Calinescu AA, Yadav VN, Carballo E, Kadiyala P, Tran D, Zamler D, Doherty R, Srikanth M, Lowenstein PR, Castro MG (2017) Survival and proliferation of neural progenitor derived glioblastomas under hypoxic stress is controlled by a CXCL12/CXCR4 autocrine positive feedback mechanism. Clin Cancer Res. 23(5):1250–1262PubMedGoogle Scholar
  48. 48.
    Dou C, Liu Z, Xu M, Jia Y, Wang Y, Li Q, Yang W, Zheng X, Tu K, Liu Q (2016) miR-187-3p inhibits the metastasis and epithelial–mesenchymal transition of hepatocellular carcinoma by targeting S100A4. Cancer Lett. 381(2):380–390PubMedGoogle Scholar
  49. 49.
    Chen S, Teng S, Cheng T, Wu K (2016) miR-1236 regulates hypoxia-induced epithelial–mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3. Cancer Lett. 378(1):59–67PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hao Zheng
    • 1
    • 2
    • 3
    • 4
  • Feng-rui Bi
    • 1
  • Yuan Yang
    • 2
    • 3
    • 4
  • Yong-gang Hong
    • 5
  • Jun-sheng Ni
    • 2
    • 3
    • 4
  • Long Ma
    • 1
  • Ming-hua Liu
    • 1
  • Li-qiang Hao
    • 5
  • Wei-ping Zhou
    • 2
    • 3
    • 4
    Email author
  • Li-hua Song
    • 6
    Email author
  • Hong-Li Yan
    • 1
    Email author
  1. 1.Department of Reproductive Heredity Center, Changhai HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  3. 3.Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU)Ministry of EducationShanghaiPeople’s Republic of China
  4. 4.Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH)ShanghaiPeople’s Republic of China
  5. 5.Department of Colorectal Surgery, Changhai HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  6. 6.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations