Advertisement

Hormones and Cancer

, Volume 10, Issue 1, pp 24–35 | Cite as

A Targeted Bivalent Androgen Receptor Binding Compound for Prostate Cancer Therapy

  • Shafinaz Chowdhury
  • Lenore K. Beitel
  • Rose Lumbroso
  • Enrico O. Purisima
  • Miltiadis Paliouras
  • Mark Trifiro
Original Paper
  • 46 Downloads

Abstract

The androgen-directed treatment of prostate cancer (PCa) is fraught with the recurrent profile of failed treatment due to drug resistance and must be addressed if we are to provide an effective therapeutic option. The most singular difficulty in the treatment of PCa is the failure to respond to classical androgen withdrawal or androgen blockade therapy, which often develops as the malignancy incurs genetic alterations and gain-of-function somatic mutations in the androgen receptor (AR). Physical cellular damaging therapeutic agents, such as radiation or activatable heat-generating transducers would circumvent classical “anti-functional” biological resistance, but to become ultimately effective would require directed application modalities. To this end, we have developed a novel AR-directed therapeutic agent by creating bivalent androgen hormone-AF-2 compounds that bind with high affinity to AR within cells. Here, we used molecular modeling and synthetic chemistry to create a number of compounds by conjugating 5α-dihydrotestosterone (DHT) to various AF-2 motif sequence peptides, through the use of a glycine and other spacer linkers. Our data indicates these compounds will bind to the AR in vitro and that altering the AF-2 peptide composition of the compound does indeed improve affinity for the AR. We also show that many of these bivalent compounds can readily pass through the plasma membrane and effectively compete against androgens alone.

Keywords

Androgen receptor Prostate cancer Androgen Bivalent compound AF-2 domain Therapeutics Molecular dynamics simulation 

Notes

Funding Information

The work was supported by a grant from Prostate Cancer Canada/Movember Foundation—Pilot Grant (#2012-905). Salary support for S.C. was provided by The Department of Urology—Jewish General Hospital (Montreal, Canada).

Supplementary material

12672_2018_353_MOESM1_ESM.pdf (182 kb)
Supplemental Data 1 Kinetic binding assays of selected SPEP compounds. (PDF 182 kb)
Supplemental Video 1

. SPEP-24 trajectory of the 50 ns MD simulation in explicit water. (MP4 29559 kb)

References

  1. 1.
    Kobayashi T, Kamba T, Terada N, Yamasaki T, Inoue T, Ogawa O (2016) High incidence of urological complications in men dying from prostate cancer. Int J Clin Oncol 21(6):1150–1154CrossRefGoogle Scholar
  2. 2.
    Carlsson S, Drevin L, Loeb S, Widmark A, Lissbrant IF, Robinson D, Johansson E, Stattin P, Fransson P (2016) Population-based study of long-term functional outcomes after prostate cancer treatment. BJU Int 117(6B):E36–E45CrossRefGoogle Scholar
  3. 3.
    Attard G et al (2016) Prostate cancer. Lancet 387(10013):70–82CrossRefGoogle Scholar
  4. 4.
    Torre LA et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  5. 5.
    DePriest AD et al (2016) Regulators of androgen action resource: a one-stop shop for the comprehensive study of androgen receptor action. DatabaseGoogle Scholar
  6. 6.
    Beltran H et al (2016) Emerging molecular biomarkers in advanced prostate cancer: translation to the clinic. Am Soc Clin Oncol Educ Book 35:131–141CrossRefGoogle Scholar
  7. 7.
    Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M, Rocchi P (2015) The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 41(7):588–597CrossRefGoogle Scholar
  8. 8.
    He B, Gampe RT Jr, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16(3):425–438CrossRefGoogle Scholar
  9. 9.
    Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21(10):381–388CrossRefGoogle Scholar
  10. 10.
    Li Y, Lambert MH, Xu HE (2003) Activation of nuclear receptors: a perspective from structural genomics. Structure 11(7):741–746CrossRefGoogle Scholar
  11. 11.
    Levenson AS, Jordan VC (1999) Selective oestrogen receptor modulation: molecular pharmacology for the millennium. Eur J Cancer 35(12):1628–1639CrossRefGoogle Scholar
  12. 12.
    Steinmetz AC, Renaud JP, Moras D (2001) Binding of ligands and activation of transcription by nuclear receptors. Annu Rev Biophys Biomol Struct 30:329–359CrossRefGoogle Scholar
  13. 13.
    Estebanez-Perpina E et al (2005) The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 280(9):8060–8068CrossRefGoogle Scholar
  14. 14.
    Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3(11):950–964CrossRefGoogle Scholar
  15. 15.
    Isaacs JT, Isaacs WB (2004) Androgen receptor outwits prostate cancer drugs. Nat Med 10(1):26–27CrossRefGoogle Scholar
  16. 16.
    Robinson D, van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvinge H, Ferraldeschi R, Flohr P, Miranda S, Zafeiriou Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath EI, Scher HI, Pienta KJ, Kantoff P, de Bono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaiyan AM (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161(5):1215–1228CrossRefGoogle Scholar
  17. 17.
    Schroder F et al (2012) Androgen deprivation therapy: past, present and future. BJU Int 109(Suppl 6):1–12CrossRefGoogle Scholar
  18. 18.
    Zaman N et al (2014) Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. PLoS One 9(11):e113190CrossRefGoogle Scholar
  19. 19.
    Sun C, Shi Y, Xu LL, Nageswararao C, Davis LD, Segawa T, Dobi A, McLeod DG, Srivastava S (2006) Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25(28):3905–3913CrossRefGoogle Scholar
  20. 20.
    Robins DM (2012) Androgen receptor gene polymorphisms and alterations in prostate cancer: of humanized mice and men. Mol Cell Endocrinol 352(1–2):26–33CrossRefGoogle Scholar
  21. 21.
    Gottlieb B et al (2012) The androgen receptor gene mutations database: 2011 update. Hum MutatGoogle Scholar
  22. 22.
    Duff J, McEwan IJ (2005) Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 19(12):2943–2954CrossRefGoogle Scholar
  23. 23.
    Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, Yuan J, Kovats SG, Kim S, Cooke VG, Monahan JE, Stegmeier F, Roberts TM, Sellers WR, Zhou W, Zhu P (2013) An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer discovery 3(9):1030–1043CrossRefGoogle Scholar
  24. 24.
    Bill-Axelson A, Holmberg L, Garmo H, Rider JR, Taari K, Busch C, Nordling S, Häggman M, Andersson SO, Spångberg A, Andrén O, Palmgren J, Steineck G, Adami HO, Johansson JE (2014) Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370(10):932–942CrossRefGoogle Scholar
  25. 25.
    Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, Gingrich JR, Wei JT, Gilhooly P, Grob BM, Nsouli I, Iyer P, Cartagena R, Snider G, Roehrborn C, Sharifi R, Blank W, Pandya P, Andriole GL, Culkin D, Wheeler T (2012) Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367(3):203–213CrossRefGoogle Scholar
  26. 26.
    Bill-Axelson A, Holmberg L, Filen F, Ruutu M, Garmo H, Busch C, Nordling S, Haggman M, Andersson SO, Bratell S, Spangberg A, Palmgren J, Adami HO, Johansson JE, for the Scandinavian Prostate Cancer Group Study Number 4 (2008) Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst 100(16):1144–1154CrossRefGoogle Scholar
  27. 27.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688CrossRefGoogle Scholar
  28. 28.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf 65(3):712–725CrossRefGoogle Scholar
  29. 29.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefGoogle Scholar
  30. 30.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRefGoogle Scholar
  31. 31.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  32. 32.
    Hauptmann H, Metzger J, Schnitzbauer A, Cuilleron CY, Mappus E, Luppa PB (2003) Syntheses and ligand-binding studies of 1 alpha- and 17 alpha-aminoalkyl dihydrotestosterone derivatives to human sex hormone-binding globulin. Steroids 68(7–8):629–639CrossRefGoogle Scholar
  33. 33.
    Ngatcha BT, Luu V (2000) The, and D. Poirier, Androsterone 3beta-substituted derivatives as inhibitors of type 3 17beta-hydroxysteroid dehydrogenase. Bioorg Med Chem Lett 10(22):2533–2536CrossRefGoogle Scholar
  34. 34.
    Kim YW, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis. Nat Protoc 6(6):761–771CrossRefGoogle Scholar
  35. 35.
    Shkolny DL et al (1999) Discordant measures of androgen-binding kinetics in two mutant androgen receptors causing mild or partial androgen insensitivity, respectively. J Clin Endocrinol Metab 84(2):805–810PubMedGoogle Scholar
  36. 36.
    Marquis JC, Hillier SM, Dinaut AN, Rodrigues D, Mitra K, Essigmann JM, Croy RG (2005) Disruption of gene expression and induction of apoptosis in prostate cancer cells by a DNA-damaging agent tethered to an androgen receptor ligand. Chem Biol 12(7):779–787CrossRefGoogle Scholar
  37. 37.
    Schaschke N, Dominik A, Matschiner G, Sommerhoff CP (2002) Bivalent inhibition of beta-tryptase: distance scan of neighboring subunits by dibasic inhibitors. Bioorg Med Chem Lett 12(6):985–988CrossRefGoogle Scholar
  38. 38.
    Selwood T, Smolensky H, McCaslin DR, Schechter NM (2005) The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease. Biochemistry 44(9):3580–3590CrossRefGoogle Scholar
  39. 39.
    Slon-Usakiewicz JJ, Sivaraman J, Li Y, Cygler M, Konishi Y (2000) Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures. Biochemistry 39(9):2384–2391CrossRefGoogle Scholar
  40. 40.
    Slon-Usakiewicz JJ, Purisima E, Tsuda Y, Sulea T, Pedyczak A, Féthière J, Cygler M, Konishi Y (1997) Nonpolar interactions of thrombin S' subsites with its bivalent inhibitor: methyl scan of the inhibitor linker. Biochemistry 36(44):13494–13502CrossRefGoogle Scholar
  41. 41.
    Shan M, Bujotzek A, Abendroth F, Wellner A, Gust R, Seitz O, Weber M, Haag R (2011) Conformational analysis of bivalent estrogen receptor ligands: from intramolecular to intermolecular binding. Chembiochem 12(17):2587–2598CrossRefGoogle Scholar
  42. 42.
    Shan M, Carlson KE, Bujotzek A, Wellner A, Gust R, Weber M, Katzenellenbogen JA, Haag R (2013) Nonsteroidal bivalent estrogen ligands: an application of the bivalent concept to the estrogen receptor. ACS Chem Biol 8(4):707–715CrossRefGoogle Scholar
  43. 43.
    Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736CrossRefGoogle Scholar
  44. 44.
    Agoulnik IU, Weigel NL (2008) Androgen receptor coactivators and prostate cancer. Horm Carci V 617:245–255Google Scholar
  45. 45.
    Hur E, Pfaff SJ, Payne ES, Grøn H, Buehrer BM, Fletterick RJ (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2(9):E274CrossRefGoogle Scholar
  46. 46.
    Li X, Martinez-Ferrer M, Botta V, Uwamariya C, Banerjee J, Bhowmick NA (2011) Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Oncogene 30(2):167–177CrossRefGoogle Scholar
  47. 47.
    Miyamoto H, Rahman M, Takatera H, Kang HY, Yeh S, Chang HC, Nishimura K, Fujimoto N, Chang C (2002) A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth. J Biol Chem 277(7):4609–4617CrossRefGoogle Scholar
  48. 48.
    Thin TH, Wang L, Kim E, Collins LL, Basavappa R, Chang C (2003) Isolation and characterization of androgen receptor mutant, AR(M749L), with hypersensitivity to 17-beta estradiol treatment. J Biol Chem 278(9):7699–7708CrossRefGoogle Scholar
  49. 49.
    Murthy LR, Johnson MP, Rowley DR, Young CYF, Scardino PT, Tindall DJ (1986) Characterization of steroid receptors in human prostate using mibolerone. Prostate 8(3):241–253CrossRefGoogle Scholar
  50. 50.
    Fletterick RJ (2005) Molecular modelling of the androgen receptor axis: rational basis for androgen receptor intervention in androgen-independent prostate cancer. BJU Int 96:2–9CrossRefGoogle Scholar
  51. 51.
    Artursson P (1998) Application of physiochemical properties of molecules to predict intestinal permeability. In Proceedings of the AAPS Workshop on Permeability Definitions and Regulatory Standards. Arlington, VAGoogle Scholar
  52. 52.
    Guharoy M, Chakrabarti P (2007) Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions. Bioinformatics 23(15):1909–1918CrossRefGoogle Scholar
  53. 53.
    Wagstaff KM, Jans DA (2006) Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 13(12):1371–1387CrossRefGoogle Scholar
  54. 54.
    Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457CrossRefGoogle Scholar
  55. 55.
    Bhattacharya S, Zhang H, Debnath AK, Cowburn D (2008) Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 283(24):16274–16278CrossRefGoogle Scholar
  56. 56.
    Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol 12(6):692–697CrossRefGoogle Scholar
  57. 57.
    Leduc AM, Trent JO, Wittliff JL, Bramlett KS, Briggs SL, Chirgadze NY, Wang Y, Burris TP, Spatola AF (2003) Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci U S A 100(20):11273–11278CrossRefGoogle Scholar
  58. 58.
    Walensky LD et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470CrossRefGoogle Scholar
  59. 59.
    Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J, Smith E, Verdine GL, Korsmeyer SJ (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 24(2):199–210CrossRefGoogle Scholar
  60. 60.
    Linja MJ et al (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61(9):3550–3555PubMedGoogle Scholar
  61. 61.
    Beattie BJ et al (2010) Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med 51(2):183–192CrossRefGoogle Scholar
  62. 62.
    Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32(3):344–350CrossRefGoogle Scholar
  63. 63.
    Zanzonico PB et al (2004) PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45(11):1966–1971PubMedGoogle Scholar
  64. 64.
    Larson SM et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45(3):366–373PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lady Davis Institute for Medical Research – Jewish General HospitalMontrealCanada
  2. 2.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.National Research Council CanadaMontrealCanada
  4. 4.Department of BiochemistryMcGill UniversityMontrealCanada
  5. 5.Division of Experimental MedicineMcGill UniversityMontrealCanada
  6. 6.Department of Medicine/OncologyMcGill UniversityMontrealCanada
  7. 7.Division of EndocrinologyJewish General HospitalMontrealCanada

Personalised recommendations