Hormones and Cancer

, Volume 9, Issue 2, pp 82–94 | Cite as

Harnessing a Different Dependency: How to Identify and Target Androgen Receptor-Positive Versus Quadruple-Negative Breast Cancer

  • Jessica L. Christenson
  • Jane B. Trepel
  • Haythem Y. Ali
  • Sunmin Lee
  • Joel R. Eisner
  • Edwina S. Baskin-Bey
  • Anthony D. Elias
  • Jennifer K. Richer
Review
  • 193 Downloads

Abstract

The androgen receptor (AR) is a promising therapeutic target for a subset of triple-negative breast cancers (TNBCs) in which AR is expressed. However, the mechanistic action of AR and the degree to which primary and metastatic tumors depend on AR, both before and after conventional treatment, remain to be defined. We discuss preclinical and clinical data for AR+ TNBC, the difficulties in monitoring AR protein levels, new methods for determining AR status, the influence of AR on “stemness” in the context of TNBC, the role of combined inhibition of sex steroid production and AR, and the role of AR in regulation of the immune system. Although the exact role of AR in subsets of TNBC is still being characterized, new therapies that target AR and the production of androgens may provide additional options for patients with TNBC for whom chemotherapy is currently the sole treatment option.

Notes

Acknowledgments

The authors thank Elise Eller, PhD, and Kelly Kilibarda, PhD, of Whitsell Innovations, Inc., Chapel Hill, NC, USA, for providing medical writing support, which was funded by Innocrin Pharmaceuticals Inc., Durham, North Carolina, USA, in accordance with Good Publication Practice (GPP3) guidelines (http://www.ismpp.org/gpp3). We also acknowledge Beatrice Babbs in the Richer Laboratory at the University of Colorado for immunohistochemistry.

Compliance with Ethical Standards

Conflict of Interest

JRE and ESBB declare that they are employed by and have stock ownership in Innocrin Pharmaceuticals, Inc. All other authors declare that they have no potential conflict of interest.

References

  1. 1.
    Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM (2011) Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol 24(7):924–931.  https://doi.org/10.1038/modpathol.2011.54 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Qi JP, Yang YL, Zhu H, Wang J, Jia Y, Liu N, Song YJ, Zan LK, Zhang X, Zhou M, Gu YH, Liu T, Hicks DG, Tang P (2012) Expression of the androgen receptor and its correlation with molecular subtypes in 980 Chinese breast cancer patients. Breast Cancer (Auckl) 6:1–8.  https://doi.org/10.4137/BCBCR.S8323 Google Scholar
  3. 3.
    Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, MacGrogan G, Lerebours F, Finetti P, Longy M, Bertheau P, Bertrand F, Bonnet F, Martin AL, Feugeas JP, Bièche I, Lehmann-Che J, Lidereau R, Birnbaum D, Bertucci F, de Thé H, Theillet C (2012) A refined molecular taxonomy of breast cancer. Oncogene 31(9):1196–1206.  https://doi.org/10.1038/onc.2011.301 CrossRefPubMedGoogle Scholar
  4. 4.
    Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, Spoelstra NS, Edgerton SM, Jean A, Guerrero J et al (2014) Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16(1):R7.  https://doi.org/10.1186/bcr3599 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sas-Korczynska B, Adamczyk A, Niemiec J, Harazin-Lechowska A, Ambicka A, Jakubowicz J (2015) Androgen receptor in male breast cancer. Pol J Pathol 66(4):347–352CrossRefPubMedGoogle Scholar
  6. 6.
    Wang C, Pan B, Zhu H, Zhou Y, Mao F, Lin Y, Xu Q, Sun Q (2016) Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget 7(29):46482–46491.  https://doi.org/10.18632/oncotarget.10208 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla I, Bedard PL, Al-Mubarak M, Seruga B, Tannock IF, Ocana A, Amir E (2014) Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst 106(1):djt319.  https://doi.org/10.1093/jnci/djt319 CrossRefPubMedGoogle Scholar
  8. 8.
    Qu Q, Mao Y, Fei XC, Shen KW (2013) The impact of androgen receptor expression on breast cancer survival: a retrospective study and meta-analysis. PLoS One 8(12):e82650.  https://doi.org/10.1371/journal.pone.0082650 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park S, Koo JS, Kim MS, Park HS, Lee JS, Lee JS, Kim SI, Park BW, Lee KS (2011) Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol 22(8):1755–1762.  https://doi.org/10.1093/annonc/mdq678 CrossRefPubMedGoogle Scholar
  10. 10.
    Lim E, Ni M, Hazra A, Tamini R, Brown M (2012) Elucidating the role of androgen receptor in breast cancer. Clin Invest 2(10):1003–1011.  https://doi.org/10.4155/cli.12.88 CrossRefGoogle Scholar
  11. 11.
    Asano Y, Kashiwagi S, Goto W, Tanaka S, Morisaki T, Takashima T, Noda S, Onoda N, Ohsawa M, Hirakawa K, Ohira M (2017) Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers (Basel) 9:1.  https://doi.org/10.3390/cancers9010004 CrossRefGoogle Scholar
  12. 12.
    Tang D, Xu S, Zhang Q, Zhao W (2012) The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol 29(2):526–533.  https://doi.org/10.1007/s12032-011-9948-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Hickey TE, Robinson JL, Carroll JS, Tilley WD (2012) Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 26(8):1252–1267.  https://doi.org/10.1210/me.2012-1107 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN, Symmans WF, Ueno NT (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19(19):5533–5540.  https://doi.org/10.1158/1078-0432.CCR-13-0799 CrossRefPubMedGoogle Scholar
  15. 15.
    Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK (2015) Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer 6(5-6):206–213.  https://doi.org/10.1007/s12672-015-0232-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Barton VN, D'Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, Heinz RE, Elias A, Jedlicka P, Jacobsen BM, Richer JK (2015) Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther 14(3):769–778.  https://doi.org/10.1158/1535-7163.MCT-14-0926 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D'Amato NC, Gordon MA, Babbs B, Spoelstra NS, Carson Butterfield KT, Torkko KC, Phan VT, Barton VN, Rogers TJ, Sartorius CA, Elias A, Gertz J, Jacobsen BM, Richer JK (2016) Cooperative dynamics of AR and ER activity in breast cancer. Mol Cancer Res 14(11):1054–1067.  https://doi.org/10.1158/1541-7786.MCR-16-0167 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, Yaswen P, Goga A, Werb Z (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135.  https://doi.org/10.1038/nature15260 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767.  https://doi.org/10.1172/JCI45014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, Rimm DL, Liu XS, Brown M (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20(1):119–131.  https://doi.org/10.1016/j.ccr.2011.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gordon MA, D’Amato NC, Gu H, Babbs B, Wulfkuhle JD, Petricoin EF, Gallagher I, Dong T, Torkko K, Liu B et al (2017) Synergy between androgen receptor antagonism and inhibition of mTOR and HER2 in breast cancer. Mol Cancer Ther 16(7):1389–1400.  https://doi.org/10.1158/1535-7163.MCT-17-0111 CrossRefPubMedGoogle Scholar
  22. 22.
    Barton VN, Christenson JL, Gordon MA, Greene LI, Rogers TJ, Butterfield K, Babbs B, Spoelstra NS, D'Amato NC, Elias A, Richer JK (2017) Androgen receptor supports an anchorage-independent, cancer stem cell-like population in triple-negative breast cancer. Cancer Res 77(13):3455–3466.  https://doi.org/10.1158/0008-5472.CAN-16-3240 CrossRefPubMedGoogle Scholar
  23. 23.
    De Amicis F, Thirugnansampanthan J, Cui Y, Selever J, Beyer A, Parra I, Weigel NL, Herynk MH, Tsimelzon A, Lewis MT, Chamness GC, Hilsenbeck SG, Andò S, Fuqua SAW (2010) Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121(1):1–11.  https://doi.org/10.1007/s10549-009-0436-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Harvell DM, Richer JK, Singh M, Spoelstra N, Finlayson C, Borges VF, Elias AD, Horwitz KB (2008) Estrogen regulated gene expression in response to neoadjuvant endocrine therapy of breast cancers: tamoxifen agonist effects dominate in the presence of an aromatase inhibitor. Breast Cancer Res Treat 112(3):489–501.  https://doi.org/10.1007/s10549-008-9923-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Harvell DM, Spoelstra NS, Singh M, McManaman JL, Finlayson C, Phang T, Trapp S, Hunter L, Dye WW, Borges VF et al (2008) Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res Treat 112(3):475–488.  https://doi.org/10.1007/s10549-008-9897-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25(28):3994–4008.  https://doi.org/10.1038/sj.onc.1209415 CrossRefPubMedGoogle Scholar
  27. 27.
    Agoff SN, Swanson PE, Linden H, Hawes SE, Lawton TJ (2003) Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol 120(5):725–731.  https://doi.org/10.1309/42F00D0DJD0J5EDT CrossRefPubMedGoogle Scholar
  28. 28.
    Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS (2010) Expression of androgen receptors in primary breast cancer. Ann Oncol 21(3):488–492.  https://doi.org/10.1093/annonc/mdp510 CrossRefPubMedGoogle Scholar
  29. 29.
    Chia KM, Liu J, Francis GD, Naderi A (2011) A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia 13(2):154–166.  https://doi.org/10.1593/neo.101324 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wellberg EA, Checkley LA, Giles ED, Johnson SJ, Oljira R, Wahdan-Alaswad R, Foright RM, Dooley G, Edgerton SM, Jindal S, Johnson GC, Richer JK, Kabos P, Thor AD, Schedin P, MacLean PS, Anderson SM (2017) The androgen receptor supports tumor progression after the loss of ovarian function in a preclinical model of obesity and breast cancer. Horm Cancer 8(5-6):269–285.  https://doi.org/10.1007/s12672-017-0302-9 CrossRefPubMedGoogle Scholar
  31. 31.
    Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, Cronin KA. 2014. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst 106Google Scholar
  32. 32.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15):4429–4434.  https://doi.org/10.1158/1078-0432.CCR-06-3045 CrossRefPubMedGoogle Scholar
  33. 33.
    Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11(6):e0157368.  https://doi.org/10.1371/journal.pone.0157368 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671.  https://doi.org/10.1038/sj.onc.1208561 CrossRefPubMedGoogle Scholar
  35. 35.
    Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157.  https://doi.org/10.1186/gb-2007-8-8-r157 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS (2011) Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 30(15):3019–3027.  https://doi.org/10.1038/emboj.2011.216 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H (2013) Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 133:66–76.  https://doi.org/10.1016/j.jsbmb.2012.08.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Aleskandarany MA, Abduljabbar R, Ashankyty I, Elmouna A, Jerjees D, Ali S, Buluwela L, Diez-Rodriguez M, Caldas C, Green AR, Ellis IO, Rakha EA (2016) Prognostic significance of androgen receptor expression in invasive breast cancer: transcriptomic and protein expression analysis. Breast Cancer Res Treat 159(2):215–227.  https://doi.org/10.1007/s10549-016-3934-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Traina TA, Miller K, Yardley DA, O'Shaughnessy J, Cortes J, Awada A, Kelly CM, Trudeau ME, Schmid P, Gianni L et al. 2015. Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol 33Google Scholar
  40. 40.
    Gucalp A, Traina TA (2017) Androgen receptor-positive, triple-negative breast cancer. Cancer 123(10):1686–1688.  https://doi.org/10.1002/cncr.30683 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu X, Daffada AA, Chan CM, Dowsett M (1997) Identification of an exon 3 deletion splice variant androgen receptor mRNA in human breast cancer. Int J Cancer 72(4):574–580.  https://doi.org/10.1002/(SICI)1097-0215(19970807)72:4<574::AID-IJC4>3.0.CO;2-N CrossRefPubMedGoogle Scholar
  42. 42.
    Hu DG, Hickey TE, Irvine C, Wijayakumara DD, Lu L, Tilley WD, Selth LA, Mackenzie PI (2014) Identification of androgen receptor splice variant transcripts in breast cancer cell lines and human tissues. Horm Cancer 5(2):61–71.  https://doi.org/10.1007/s12672-014-0171-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Ahrens-Fath I, Politz O, Geserick C, Haendler B (2005) Androgen receptor function is modulated by the tissue-specific AR45 variant. FEBS J 272(1):74–84.  https://doi.org/10.1111/j.1432-1033.2004.04395.x CrossRefPubMedGoogle Scholar
  44. 44.
    Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ, Brodie AMH, Edwards J, Qiu Y (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69(6):2305–2313.  https://doi.org/10.1158/0008-5472.CAN-08-3795 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, de Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038.  https://doi.org/10.1056/NEJMoa1315815 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, Silberstein JL, Taylor MN, Maughan BL, Denmeade SR, Pienta KJ, Paller CJ, Carducci MA, Eisenberger MA, Luo J (2017) Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol 35(19):2149–2156.  https://doi.org/10.1200/JCO.2016.70.1961 CrossRefPubMedGoogle Scholar
  47. 47.
    Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, Maier C, Cronauer MV, Steinestel K, Schrader AJ. (2015) Detecting predictive androgen receptor modifications in circulating prostate cancer cells. OncotargetGoogle Scholar
  48. 48.
    Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, Johnson A, Jendrisak A, Bambury R, Danila D, McLaughlin B, Wahl J, Greene SB, Heller G, Marrinucci D, Fleisher M, Dittamore R (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2(11):1441–1449.  https://doi.org/10.1001/jamaoncol.2016.1828 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zaha DC (2014) Significance of immunohistochemistry in breast cancer. World J Clin Oncol 5(3):382–392.  https://doi.org/10.5306/wjco.v5.i3.382 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dimitrakakis C, Bondy C (2009) Androgens and the breast. Breast Cancer Res 11(5):212.  https://doi.org/10.1186/bcr2413 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gallicchio L, Macdonald R, Wood B, Rushovich E, Helzlsouer KJ (2011) Androgens and musculoskeletal symptoms among breast cancer patients on aromatase inhibitor therapy. Breast Cancer Res Treat 130(2):569–577.  https://doi.org/10.1007/s10549-011-1611-2 CrossRefPubMedGoogle Scholar
  52. 52.
    Morris KT, Toth-Fejel S, Schmidt J, Fletcher WS, Pommier RF (2001) High dehydroepiandrosterone-sulfate predicts breast cancer progression during new aromatase inhibitor therapy and stimulates breast cancer cell growth in tissue culture: a renewed role for adrenalectomy. Surgery 130(6):947–953.  https://doi.org/10.1067/msy.2001.118378 CrossRefPubMedGoogle Scholar
  53. 53.
    Ingle JN, Kalari KR, Buzdar AU, Robson ME, Goetz MP, Desta Z, Barman P, Dudenkov TT, Northfelt DW, Perez EA, Flockhart DA, Williard CV, Wang L, Weinshilboum RM (2015) Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids 99(Pt A):32–38.  https://doi.org/10.1016/j.steroids.2014.08.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Rossi E, Morabito A, Di Rella F, Esposito G, Gravina A, Labonia V, Landi G, Nuzzo F, Pacilio C, De Maio E, di Maio M, Piccirillo MC, de Feo G, D’Aiuto G, Botti G, Chiodini P, Gallo C, Perrone F, de Matteis A (2009) Endocrine effects of adjuvant letrozole compared with tamoxifen in hormone-responsive postmenopausal patients with early breast cancer: the HOBOE trial. J Clin Oncol 27(19):3192–3197.  https://doi.org/10.1200/JCO.2008.18.6213 CrossRefPubMedGoogle Scholar
  55. 55.
    Hadji P, Kauka A, Bauer T, Tams J, Hasenburg A, Kieback DG (2012) Effects of exemestane and tamoxifen on hormone levels within the Tamoxifen Exemestane Adjuvant Multicentre (TEAM) trial: results of a German substudy. Climacteric 15(5):460–466.  https://doi.org/10.3109/13697137.2011.647839 CrossRefPubMedGoogle Scholar
  56. 56.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324(5928):787–790.  https://doi.org/10.1126/science.1168175 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Fléchon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS, AFFIRM Investigators (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187–1197.  https://doi.org/10.1056/NEJMoa1207506 CrossRefPubMedGoogle Scholar
  58. 58.
    Lu J, Van der Steen T, Tindall DJ (2015) Are androgen receptor variants a substitute for the full-length receptor? Nat Rev Urol 12(3):137–144.  https://doi.org/10.1038/nrurol.2015.13 CrossRefPubMedGoogle Scholar
  59. 59.
    Ardiani A, Gameiro SR, Kwilas AR, Donahue RN, Hodge JW (2014) Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway. Oncotarget 5(19):9335–9348.  https://doi.org/10.18632/oncotarget.2429 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chan SC, Dehm SM (2014) Constitutive activity of the androgen receptor. Adv Pharmacol 70:327–366.  https://doi.org/10.1016/B978-0-12-417197-8.00011-0 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hickey TE, Irvine CM, Dvinge H, Tarulli GA, Hanson AR, Ryan NK, Pickering MA, Birrell SN, Hu DG, Mackenzie PI, Russell R, Caldas C, Raj GV, Dehm SM, Plymate SR, Bradley RK, Tilley WD, Selth LA (2015) Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget 6(42):44728–44744.  https://doi.org/10.18632/oncotarget.6296 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14:531–548CrossRefPubMedGoogle Scholar
  63. 63.
    Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME (2010) Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem 56(9):1492–1495.  https://doi.org/10.1373/clinchem.2010.143297 CrossRefPubMedGoogle Scholar
  64. 64.
    Lilja H, Scher HI (2010) Detection of androgen receptor mutations in circulating tumor cells: highlights of the long road to clinical qualification. Clin Chem 56(9):1375–1377.  https://doi.org/10.1373/clinchem.2010.150896 CrossRefPubMedGoogle Scholar
  65. 65.
    Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M, Smas ME, Lord JB, Brannigan BW, Trautwein J, Bander NH, Wu CL, Sequist LV, Smith MR, Ramaswamy S, Toner M, Maheswaran S, Haber DA (2012) Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov 2(11):995–1003.  https://doi.org/10.1158/2159-8290.CD-12-0222 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Reyes EE, VanderWeele DJ, Isikbay M, Duggan R, Campanile A, Stadler WM, Vander Griend DJ, Szmulewitz RZ (2014) Quantitative characterization of androgen receptor protein expression and cellular localization in circulating tumor cells from patients with metastatic castration-resistant prostate cancer. J Transl Med 12(1):313.  https://doi.org/10.1186/s12967-014-0313-z CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Crespo M, van Dalum G, Ferraldeschi R, Zafeiriou Z, Sideris S, Lorente D, Bianchini D, Rodrigues DN, Riisnaes R, Miranda S, Figueiredo I, Flohr P, Nowakowska K, de Bono JS, Terstappen LWMM, Attard G (2015) Androgen receptor expression in circulating tumour cells from castration-resistant prostate cancer patients treated with novel endocrine agents. Br J Cancer 112(7):1166–1174.  https://doi.org/10.1038/bjc.2015.63 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fujii T, Reuben JM, Krupa R, Graf R, Johnson C, Dugan L, Louw J, Lim B, Barcenas CH, Marx AN et al (2016) Androgen receptor expression on circulating tumor cells (CTCs) in metastatic breast cancer. Cancer Res 76(14 Supplement):496–496.  https://doi.org/10.1158/1538-7445.AM2016-496 CrossRefGoogle Scholar
  69. 69.
    Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, Moon M, Maneval EC, Chen I, Darimont B, Hager JH (2013) A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 3(9):1020–1029.  https://doi.org/10.1158/2159-8290.CD-13-0226 CrossRefPubMedGoogle Scholar
  70. 70.
    Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, Yuan J, Kovats SG, Kim S, Cooke VG, Monahan JE, Stegmeier F, Roberts TM, Sellers WR, Zhou W, Zhu P (2013) An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 3(9):1030–1043.  https://doi.org/10.1158/2159-8290.CD-13-0142 CrossRefPubMedGoogle Scholar
  71. 71.
    Canzoniero JV, Park BH (2016) Use of cell free DNA in breast oncology. Biochim Biophys Acta 1865(2):266–274.  https://doi.org/10.1016/j.bbcan.2016.03.006 PubMedGoogle Scholar
  72. 72.
    Soekmadji C, Russell PJ, Nelson CC (2013) Exosomes in prostate cancer: putting together the pieces of a puzzle. Cancers (Basel) 5(4):1522–1544.  https://doi.org/10.3390/cancers5041522 CrossRefGoogle Scholar
  73. 73.
    Hosseini-Beheshti E, Choi W, Weiswald LB, Kharmate G, Ghaffari M, Roshan-Moniri M, Hassona MD, Chan L, Chin MY, Tai IT, Rennie PS, Fazli L, Tomlinson Guns ES (2016) Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment. Oncotarget 7(12):14639–14658.  https://doi.org/10.18632/oncotarget.7052 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mizutani K, Terazawa R, Kameyama K, Kato T, Horie K, Tsuchiya T, Seike K, Ehara H, Fujita Y, Kawakami K, Ito M, Deguchi T (2014) Isolation of prostate cancer-related exosomes. Anticancer Res 34(7):3419–3423PubMedGoogle Scholar
  75. 75.
    Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, Miccoli M, Galli L, Falcone A, Jenster GW, van Schaik RH, Danesi R (2016) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71(4):680–687.  https://doi.org/10.1016/j.eururo.2016.08.012 PubMedGoogle Scholar
  76. 76.
    Qu F, Xie W, Nakabayashi M, Zhang H, Jeong SH, Wang X, Komura K, Sweeney CJ, Sartor O, Lee GM et al (2017) Association of AR-V7 and prostate-specific antigen RNA levels in blood with efficacy of abiraterone acetate and enzalutamide treatment in men with prostate cancer. Clin Cancer Res 23(3):726–734.  https://doi.org/10.1158/1078-0432.CCR-16-1070 CrossRefPubMedGoogle Scholar
  77. 77.
    Liu X, Ledet E, Li D, Dotiwala A, Steinberger A, Feibus A, Li J, Qi Y, Silberstein J, Lee B, Dong Y, Sartor O, Zhang H (2016) A whole blood assay for AR-V7 and ARv567es in patients with prostate cancer. J Urol 196(6):1758–1763.  https://doi.org/10.1016/j.juro.2016.06.095 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Marcucci F, Stassi G, De Maria R (2016) Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 15(5):311–325.  https://doi.org/10.1038/nrd.2015.13 CrossRefPubMedGoogle Scholar
  79. 79.
    Wang Y, Zhou BP (2013) Epithelial-mesenchymal transition—a hallmark of breast cancer metastasis. Cancer Hallm 1(1):38–49.  https://doi.org/10.1166/ch.2013.1004 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196.  https://doi.org/10.1038/nrm3758 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Liu YN, Liu Y, Lee HJ, Hsu YH, Chen JH (2008) Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 28(23):7096–7108.  https://doi.org/10.1128/MCB.00449-08 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Feng J, Li L, Zhang N, Liu J, Zhang L, Gao H, Wang G, Li Y, Zhang Y, Li X, Liu D, Lu J, Huang B (2016) Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene 36(20):2775–2790.  https://doi.org/10.1038/onc.2016.432 CrossRefPubMedGoogle Scholar
  83. 83.
    Zhu A, Li Y, Song W, Xu Y, Yang F, Zhang W, Yin Y, Guan X (2016) Antiproliferative effect of androgen receptor inhibition in mesenchymal stem-like triple-negative breast cancer. Cell Physiol Biochem 38(3):1003–1014.  https://doi.org/10.1159/000443052 CrossRefPubMedGoogle Scholar
  84. 84.
    Christenson JL, Butterfield KT, Spoelstra NS, Norris JD, Josan JS, Pollock JA, McDonnell DP, Katzenellenbogen BS, Katzenellenbogen JA, Richer JK (2017) MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm Cancer 8(2):69–77.  https://doi.org/10.1007/s12672-017-0285-6 CrossRefPubMedGoogle Scholar
  85. 85.
    Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C (2012) Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. Am J Pathol 181(5):1504–1512.  https://doi.org/10.1016/j.ajpath.2012.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, Lin HY, Hsu JW, Keng P, Wu MC, Chang C (2009) Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med 206(5):1181–1199.  https://doi.org/10.1084/jem.20082521 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ (1997) Androgens alter B cell development in normal male mice. Cell Immunol 182(2):99–104.  https://doi.org/10.1006/cimm.1997.1227 CrossRefPubMedGoogle Scholar
  88. 88.
    Olsen NJ, Kovacs WJ (2001) Effects of androgens on T and B lymphocyte development. Immunol Res 23(2-3):281–288.  https://doi.org/10.1385/IR:23:2-3:281 CrossRefPubMedGoogle Scholar
  89. 89.
    Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED (2004) Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173(10):6098–6108.  https://doi.org/10.4049/jimmunol.173.10.6098 CrossRefPubMedGoogle Scholar
  90. 90.
    Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK, Arredouani MS (2014) Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A 111(27):9887–9892.  https://doi.org/10.1073/pnas.1402468111 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirström K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67.  https://doi.org/10.1158/2159-8274.CD-10-0028 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955.  https://doi.org/10.1200/JCO.2010.30.5037 CrossRefPubMedGoogle Scholar
  93. 93.
    West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH (2011) Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res 13(6):R126.  https://doi.org/10.1186/bcr3072 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Mercader M, Bodner BK, Moser MT, Kwon PS, Park ES, Manecke RG, Ellis TM, Wojcik EM, Yang D, Flanigan RC et al (2001) T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci U S A 98(25):14565–14570.  https://doi.org/10.1073/pnas.251140998 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ardiani A, Farsaci B, Rogers CJ, Protter A, Guo Z, King TH, Apelian D, Hodge JW (2013) Combination therapy with a second-generation androgen receptor antagonist and a metastasis vaccine improves survival in a spontaneous prostate cancer model. Clin Cancer Res 19(22):6205–6218.  https://doi.org/10.1158/1078-0432.CCR-13-1026 CrossRefPubMedGoogle Scholar
  96. 96.
    Kwilas AR, Ardiani A, Gameiro SR, Richards J, Hall AB, Hodge JW (2016) Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget 7(17):23498–23511.  https://doi.org/10.18632/oncotarget.8274 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pu Y, Xu M, Liang Y, Yang K, Guo Y, Yang X, Fu YX (2016) Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse. Sci Transl Med 8(333, 333ra47):333ra347.  https://doi.org/10.1126/scitranslmed.aad5659 CrossRefGoogle Scholar
  98. 98.
    Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, Xiao Y, Wang Y, Molinero L, Chen DS et al. (2015) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). AACR Annual MeetingGoogle Scholar
  99. 99.
    Adams S, Diamond JR, Hamilton EP, Pohlmann PR, Tolaney SM, Molinero L, He X, Waterkamp D, Funke RP, Powderly JD (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). ASCO Annu MeetGoogle Scholar
  100. 100.
    Elias A, Kabos P (2017) Triple negative breast cancer: a review. Int Med Rev 3(4).  https://doi.org/10.18103/imr.v3i4.394
  101. 101.
    Orteronel as monotherapy in patients with metastatic breast cancer (MBC) that expresses the androgen receptor (AR). Available at: [https://clinicaltrials.gov/ct2/show/NCT01990209]. Accessed May 5, 2017
  102. 102.
    Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP (2002) Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 277(29):26321–26326.  https://doi.org/10.1074/jbc.M203310200 CrossRefPubMedGoogle Scholar
  103. 103.
    Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell K, Rugo H, Nabell L, Forero A, Stearns V, Doane AS, Danso M, Moynahan ME, Momen LF, Gonzalez JM, Akhtar A, Giri DD, Patil S, Feigin KN, Hudis CA, Traina TA, on behalf of the Translational Breast Cancer Research Consortium (TBCRC 011) (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 19(19):5505–5512.  https://doi.org/10.1158/1078-0432.CCR-12-3327 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Jung ME, Ouk S, Yoo D, Sawyers CL, Chen C, Tran C, Wongvipat J (2010) Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration-resistant prostate cancer (CRPC). J Med Chem 53(7):2779–2796.  https://doi.org/10.1021/jm901488g CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Makkonen H, Kauhanen M, Jaaskelainen T, Palvimo JJ (2011) Androgen receptor amplification is reflected in the transcriptional responses of vertebral-cancer of the prostate cells. Mol Cell Endocrinol 331(1):57–65.  https://doi.org/10.1016/j.mce.2010.08.008 CrossRefPubMedGoogle Scholar
  106. 106.
    Bonnefoi H, Grellety T, Tredan O, Saghatchian M, Dalenc F, Mailliez A, L'Haridon T, Cottu P, Abadie-Lacourtoisie S, You B, Mousseau M, Dauba J, del Piano F, Desmoulins I, Coussy F, Madranges N, Grenier J, Bidard FC, Proudhon C, MacGrogan G, Orsini C, Pulido M, Gonçalves A (2016) A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol 27(5):812–818.  https://doi.org/10.1093/annonc/mdw067 CrossRefPubMedGoogle Scholar
  107. 107.
    Gucalp A, Danso MA, Elias AD, Bardia A, Ali HY, Potter D, Gabrail NY, Haley BB, Khong HT, Riley EC et al (2017) Phase (Ph) 2 stage 1 clinical activity of seviteronel, a selective CYP17-lyase and androgen receptor (AR) inihibitor, in women with advanced AR+ triple-negative breast cancer (TNBC) or estrogen receptor (ER)+ BC: CLARITY-01. J Clin Oncol 35: abstr 1102Google Scholar
  108. 108.
    CYP17 lyase and androgen receptor inhibitor treatment with seviteronel trial (INO-VT-464-006; NCT02580048) (CLARITY-01). Available at: [https://clinicaltrials.gov/ct2/show/NCT02580448]. Accessed March 1, 2017
  109. 109.
    Palbociclib in combination with bicalutamide for the treatment of AR(+) metastatic breast cancer (MBC). Available at: [https://clinicaltrials.gov/ct2/show/NCT02605486]. Accessed March 1, 2017
  110. 110.
    Taselisib and enzalutamide in treating patients with androgen receptor positive triple-negative metastatic breast cancer. Available at: [https://clinicaltrials.gov/ct2/show/NCT02457910]. Accessed March 1, 2017
  111. 111.
    Phase IIB neoadjuvant enzalutamide (ZT) plus taxol for androgen receptor (AR)-positive triple-negative breast cancer (AR+ TNBC). Available at: [https://clinicaltrials.gov/ct2/show/NCT02689427]. Accessed June 6, 2017
  112. 112.
    Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N (2010) Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 70(20):7992–8002.  https://doi.org/10.1158/0008-5472.CAN-10-0585 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  3. 3.Henry Ford Medical GroupBrownstownUSA
  4. 4.Innocrin Pharmaceuticals Inc.DurhamUSA
  5. 5.Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations