Hormones and Cancer

, Volume 4, Issue 6, pp 343–357

SGTA: A New Player in the Molecular Co-Chaperone Game

  • Lisa K. Philp
  • Miriam S. Butler
  • Theresa E. Hickey
  • Lisa M. Butler
  • Wayne D. Tilley
  • Tanya K. Day


Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) is a steroid receptor molecular co-chaperone that may substantially influence hormone action and, consequently, hormone-mediated carcinogenesis. To date, published studies describe SGTA as a protein that is potentially critical in a range of biological processes, including viral infection, cell division, mitosis, and cell cycle checkpoint activation. SGTA interacts with the molecular chaperones, heat shock protein 70 (HSP70) and HSP90, and with steroid receptor complexes, including those containing the androgen receptor. Steroid receptors are critical for maintaining cell growth and differentiation in hormonally regulated tissues, such as male and female reproductive tissues, and also play a role in disease states involving these tissues. There is growing evidence that, through its interactions with chaperones and steroid receptors, SGTA may be a key player in the pathogenesis of hormonally influenced disease states, including prostate cancer and polycystic ovary syndrome. Research into the function of SGTA has been conducted in several model organisms and cell types, with these studies showing that SGTA functionality is cell-specific and tissue-specific. However, very few studies have been replicated in multiple cell types or experimental systems. Although a broad range of functions have been attributed to SGTA, there is a serious lack of mechanistic information to describe how SGTA acts. In this review, published evidence linking SGTA with hormonally regulated disease states is summarized and discussed, highlighting the need for future research to more clearly define the biological function(s) of this potentially important co-chaperone.

Supplementary material

12672_2013_151_Fig4_ESM.jpg (13 kb)
Supplementary Fig. 1

Mouse SGTA structural information. The mouse SGTA gene is located on chromosome 10. The gene is organized into 11 exons, encoding a 315 amino acid protein (JPEG 13 kb)

12672_2013_151_MOESM1_ESM.tif (103 kb)
High resolution image (TIFF 102 kb)


  1. 1.
    Amato P, Simpson JL (2004) The genetics of polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18(5):707–718PubMedCrossRefGoogle Scholar
  2. 2.
    Andreyeva A, Leshchyns’ka I, Knepper M, Betzel C, Redecke L, Sytnyk V, Schachner M (2010) CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PLoS One 5(8):e12018PubMedCrossRefGoogle Scholar
  3. 3.
    Angeletti PC, Walker D, Panganiban AT (2002) Small glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 7(3):258–268PubMedCrossRefGoogle Scholar
  4. 4.
    Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21(11):932–939PubMedCrossRefGoogle Scholar
  5. 5.
    Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608PubMedCrossRefGoogle Scholar
  6. 6.
    Brinker A, Scheufler C, von der Mulbe F, Fleckenstein B, Herrmann C, Jung G, Moarefi I, Hartl FU (2002) Ligand discrimination by TPR domains: relevance and selectivity of EEVD-peptide recognition in Hsp70–Hop–Hsp90 complexes. J Biol Chem 277(22):19265–19275PubMedCrossRefGoogle Scholar
  7. 7.
    Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22(14):3613–3623PubMedCrossRefGoogle Scholar
  8. 8.
    Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC-L, Jia L, Butler LM et al (2007) Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine-rich tetratricopeptide repeat containing protein a. Cancer Res 67(20):10087–10096PubMedCrossRefGoogle Scholar
  9. 9.
    Buchner E, Gundersen C (1997) The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci 20(5):223–227PubMedCrossRefGoogle Scholar
  10. 10.
    Bukrinskaya AG (2004) HIV-1 assembly and maturation. Arch Virol 149(6):1067–1082PubMedCrossRefGoogle Scholar
  11. 11.
    Butler M, Ricciardelli C, Tilley WD, Hickey TE (2013) Androgen receptor protein levels are significantly reduced in serous ovarian cancer compared with benign or borderline disease but are not altered by cancer stage or metastatic progression. Horm Cancer 4:154–164Google Scholar
  12. 12.
    Butler M, Yang X, Ricciardelli C, Liang X, Norman R, Tilley W, Hickey T (2013) Small glutamine-rich tetratricopeptide repeat containing protein alpha (SGTA) is present in human ovaries but not differentially expressed in relation to polycystic ovary syndrome. Fertil Steril 99:2076–2083Google Scholar
  13. 13.
    Caillet-Fauquet P, Perros M, Brandenburger A, Spegelaere P, Rommelaere J (1990) Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J 9(9):2989–2995PubMedGoogle Scholar
  14. 14.
    Callahan MA, Handley MA, Lee Y-H, Talbot KJ, Harper JW, Panganiban AT (1998) Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 72(6):5189–5197PubMedGoogle Scholar
  15. 15.
    Carrello A, Ingley E, Minchin RF, Tsai S, Ratajczak T (1999) The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90. J Biol Chem 274(5):2682–2689PubMedCrossRefGoogle Scholar
  16. 16.
    Carter-Su C, Schwartz J, Smit LJ (1996) Molecular mechanism of growth hormone action. Annu Rev Physiol 58(1):187–207PubMedCrossRefGoogle Scholar
  17. 17.
    Chartron JW, VanderVelde DG, Clemons WM Jr (2012) Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Rep 2(6):1620–1632PubMedCrossRefGoogle Scholar
  18. 18.
    Chen H, Yong W, Hinds TD, Yang Z, Zhou Y, Sanchez ER, Shou W (2010) Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J Biol Chem 285(36):27776–27784PubMedCrossRefGoogle Scholar
  19. 19.
    Chen MX, Cohen PT (1997) Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett 400(1):136–140PubMedCrossRefGoogle Scholar
  20. 20.
    Chen MY, Maldarelli F, Karczewski MK, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol 67(7):3877–3884PubMedGoogle Scholar
  21. 21.
    Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19(6):1654–1666PubMedCrossRefGoogle Scholar
  22. 22.
    Cox MB, Riggs DL, Hessling M, Schumacher F, Buchner J, Smith DF (2007) FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity. Mol Endocrinol 21(12):2956–2967PubMedCrossRefGoogle Scholar
  23. 23.
    Cziepluch C, Kordes E, Poirey R, Grewenig A, Rommelaere J, Jauniaux J-C (1998) Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72(5):4149–4156PubMedGoogle Scholar
  24. 24.
    Cziepluch C, Lampel S, Grewenig A, Grund C, Lichter P, Rommelaere J (2000) H-1 parvovirus-associated replication bodies: a distinct virus-induced nuclear structure. J Virol 74(10):4807–4815PubMedCrossRefGoogle Scholar
  25. 25.
    Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J 17(5):1192–1199PubMedCrossRefGoogle Scholar
  26. 26.
    Davies TH, Ning YM, Sanchez ER (2002) A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 277(7):4597–4600PubMedCrossRefGoogle Scholar
  27. 27.
    Davies TH, Ning YM, Sánchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038PubMedCrossRefGoogle Scholar
  28. 28.
    Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141(11):4107–4113PubMedCrossRefGoogle Scholar
  29. 29.
    Dutta S, Kotaka M, Tan YJ (2008) Expression, purification and preliminary crystallographic analysis of recombinant human small glutamine-rich tetratricopeptide-repeat protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 7):602–604PubMedCrossRefGoogle Scholar
  30. 30.
    Dutta S, Tan Y-J (2008) Structural and functional characterization of human SGT and its interaction with Vpu of the human immunodeficiency virus type 1. Biochemistry 47(38):10123–10131PubMedCrossRefGoogle Scholar
  31. 31.
    Escobar-Morreale HF, Luque-Ramirez M, San Millan JL (2005) The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 26(2):251–282PubMedCrossRefGoogle Scholar
  32. 32.
    Ewens KG, Stewart DR, Ankener W, Urbanek M, McAllister JM, Chen C, Baig KM et al (2010) Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab 95(5):2306–2315PubMedCrossRefGoogle Scholar
  33. 33.
    Fielding BC, Gunalan V, Tan THP, Chou C-F, Shen S, Khan S, Lim SG, Hong W, Tan Y-J (2006) Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT. Biochem Biophys Res Commun 343(4):1201–1208PubMedCrossRefGoogle Scholar
  34. 34.
    Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A 99(14):9439–9444PubMedCrossRefGoogle Scholar
  35. 35.
    Goodarzi MO, Xu N, Cui J, Guo X, Chen YI, Azziz R (2008) Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), a candidate gene for polycystic ovary syndrome. Hum Reprod 23(5):1214–1219PubMedCrossRefGoogle Scholar
  36. 36.
    Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A et al (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74PubMedCrossRefGoogle Scholar
  37. 37.
    Handley MA, Paddock S, Dall A, Panganiban AT (2001) Association of Vpu-binding protein with microtubules and Vpu-dependent redistribution of HIV-1 Gag protein. Virology 291(2):198–207PubMedCrossRefGoogle Scholar
  38. 38.
    Hanke K, Chudak C, Kurth R, Bannert N (2012) The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer 132:556–567Google Scholar
  39. 39.
    Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC (2012) Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 153(1):450–461PubMedCrossRefGoogle Scholar
  40. 40.
    Horie K, Takakura K, Fujiwara H, Suginami H, Liao S, Mori T (1992) Immunohistochemical localization of androgen receptor in the human ovary throughout the menstrual cycle in relation to oestrogen and progesterone receptor expression. Hum Reprod 7(2):184–190PubMedGoogle Scholar
  41. 41.
    Horie K, Takakura K, Imai K, Liao S, Mori T (1992) Immunohistochemical localization of androgen receptor in the human endometrium, decidua, placenta and pathological conditions of the endometrium. Hum Reprod 7(10):1461–1466PubMedGoogle Scholar
  42. 42.
    Hristov G, Krämer M, Li J, El-Andaloussi N, Mora R, Daeffler L, Zentgraf H, Rommelaere J, Marchini A (2010) Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 84(12):5909–5922PubMedCrossRefGoogle Scholar
  43. 43.
    Kampinga HH, Kanon B, Salomons FA, Kabakov AE, Patterson C (2003) Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Mol Cell Biol 23(14):4948–4958PubMedCrossRefGoogle Scholar
  44. 44.
    Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5(2):76–86PubMedCrossRefGoogle Scholar
  45. 45.
    Kordes E, Savelyeva L, Schwab M, Rommelaere J, Jauniaux J-C, Cziepluch C (1998) Isolation and characterization of human SGT and identification of homologues in Saccharomyces cerevisiae and Caenorhabditis elegans. Genomics 52(1):90–94PubMedCrossRefGoogle Scholar
  46. 46.
    Leznicki P, High S (2012) SGTA antagonizes BAG6-mediated protein triage. Proc Natl Acad Sci U S A 109(47):19214–19219PubMedCrossRefGoogle Scholar
  47. 47.
    Li AJ, Karlan BY (2008) Androgens and epithelial ovarian cancer: what’s the connection? Cancer Biol Ther 7(11):1712–1716PubMedCrossRefGoogle Scholar
  48. 48.
    Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823(3):624–635PubMedCrossRefGoogle Scholar
  49. 49.
    Liou S-T, Wang C (2005) Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435(2):253–263PubMedCrossRefGoogle Scholar
  50. 50.
    Liu F-H, Wu S-J, Hu S-M, Hsiao C-D, Wang C (1999) Specific interaction of the 70-kDa heat shock cognate protein with the tetratricopeptide repeats. J Biol Chem 274(48):34425–34432PubMedCrossRefGoogle Scholar
  51. 51.
    Marcelli M, Stenoien DL, Szafran AT, Simeoni S, Agoulnik IU, Weigel NL, Moran T, Mikic I, Price JH, Mancini MA (2006) Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem 98(4):770–788PubMedCrossRefGoogle Scholar
  52. 52.
    Martelli PL, D’Antonio M, Bonizzoni P, Castrignanò T, D’Erchia AM, D’Onorio De Meo P, Fariselli P et al (2011) ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing. Nucleic Acids Res 39(Database issue):D80–D85Google Scholar
  53. 53.
    Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Cameron BG (1994) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263(5149):981–982PubMedCrossRefGoogle Scholar
  54. 54.
    Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39(3):321–331PubMedCrossRefGoogle Scholar
  55. 55.
    McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315(4):787–798PubMedCrossRefGoogle Scholar
  56. 56.
    McPherron AC, Lawler AM, Lee S-J (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90PubMedCrossRefGoogle Scholar
  57. 57.
    McPherron AC, Lee S-J (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94(23):12457–12461PubMedCrossRefGoogle Scholar
  58. 58.
    Miyata Y, Chambraud B, Radanyi C, Leclerc J, Lebeau M-C, Renoir J-M, Shirai R, Catelli M-G, Yahara I, Baulieu E-E (1997) Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of HSP90-binding activity of FKBP52. Proc Natl Acad Sci U S A 94(26):14500–14505PubMedCrossRefGoogle Scholar
  59. 59.
    Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (2008) Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47(31):8203–8213PubMedCrossRefGoogle Scholar
  60. 60.
    Moritz A, Li Y, Guo A, Villén J, Wang Y, MacNeill J, Kornhauser J et al (2010) Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3(136):ra64PubMedCrossRefGoogle Scholar
  61. 61.
    Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30(5):1243–1253PubMedCrossRefGoogle Scholar
  62. 62.
    Norman RJ, Dewailly D, Legro RS, Hickey TE (2007) Polycystic ovary syndrome. Lancet 370(9588):685–697PubMedCrossRefGoogle Scholar
  63. 63.
    Picard D (2006) Chaperoning steroid hormone action. Trend Endocrinol Metab 17(6):229–235CrossRefGoogle Scholar
  64. 64.
    Picard D (2008) A stress protein interface of innate immunity. EMBO Rep 9(12):1193–1195PubMedCrossRefGoogle Scholar
  65. 65.
    Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872PubMedCrossRefGoogle Scholar
  66. 66.
    Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360PubMedCrossRefGoogle Scholar
  67. 67.
    Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228(2):111–133Google Scholar
  68. 68.
    Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18(3):754–762PubMedCrossRefGoogle Scholar
  69. 69.
    Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188(3):281–290PubMedCrossRefGoogle Scholar
  70. 70.
    Scarlata S, Carter C (2003) Role of HIV-1 Gag domains in viral assembly. Biochim Biophys Acta 1614(1):62–72PubMedCrossRefGoogle Scholar
  71. 71.
    Schantl JA, Roza M, De Jong AP, Strous GJ (2003) Small glutamine-rich tetratricopeptide repeat-containing protein (SGT) interacts with the ubiquitin-dependent endocytosis (UbE) motif of the growth hormone receptor. Biochem J 373(3):855–863PubMedCrossRefGoogle Scholar
  72. 72.
    Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101(2):199–210PubMedCrossRefGoogle Scholar
  73. 73.
    Silverstein AM, Galigniana MD, Kanelakis KC, Radanyi C, Renoir JM, Pratt WB (1999) Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein. J Biol Chem 274(52):36980–36986PubMedCrossRefGoogle Scholar
  74. 74.
    Song C-H, Gong E-Y, Park J, Lee K (2012) Testicular steroidogenesis is locally regulated by androgen via suppression of Nur77. Biochem Biophys Res Commun 422(2):327–332PubMedCrossRefGoogle Scholar
  75. 75.
    Stahl B, Tobaben S, Sudhof TC (1999) Two distinct domains in hsc70 are essential for the interaction with the synaptic vesicle cysteine string protein. Eur J Cell Biol 78(6):375–381PubMedCrossRefGoogle Scholar
  76. 76.
    Stewart DR, Dombroski BA, Urbanek M, Ankener W, Ewens KG, Wood JR, Legro RS, Strauss JF 3rd, Dunaif A, Spielman RS (2006) Fine mapping of genetic susceptibility to polycystic ovary syndrome on chromosome 19p13.2 and tests for regulatory activity. J Clin Endocrinol Metab 91(10):4112–4117PubMedCrossRefGoogle Scholar
  77. 77.
    Strebel K, Klimkait T, Maldarelli F, Martin MA (1989) Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol 63(9):3784–3791PubMedGoogle Scholar
  78. 78.
    Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241(4870):1221–1223PubMedCrossRefGoogle Scholar
  79. 79.
    Suzuki T, Sasano H, Kimura N, Tamura M, Fukaya T, Yajima A, Nagura H (1994) Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Hum Reprod 9(9):1589–1595PubMedGoogle Scholar
  80. 80.
    Taylor P, Dornan J, Carrello A, Minchin RF, Ratajczak T, Walkinshaw MD (2001) Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure 9(5):431–438PubMedCrossRefGoogle Scholar
  81. 81.
    Tobaben S, Thakur P, Fernandez-Chacon R, Sudhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31(6):987–999PubMedCrossRefGoogle Scholar
  82. 82.
    Tobaben S, Varoqueaux F, Brose N, Stahl B, Meyer G (2003) A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem 278(40):38376–38383PubMedCrossRefGoogle Scholar
  83. 83.
    Trotta AP, Need EF, Butler LM, Selth LA, O’Loughlin MA, Coetzee GA, Tilley WD, Buchanan G (2012) Subdomain structure of the co-chaperone SGTA and activity of its androgen receptor client. J Mol Endocrinol 49(2):57–68PubMedCrossRefGoogle Scholar
  84. 84.
    Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF, Tomer Y (2001) Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 86(1):446–449PubMedCrossRefGoogle Scholar
  85. 85.
    Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, Strauss JF III, Spielman RS, Dunaif A (1999) Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci U S A 96(15):8573–8578PubMedCrossRefGoogle Scholar
  86. 86.
    Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF III, Dunaif A, Spielman RS (2005) Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab 90(12):6623–6629PubMedCrossRefGoogle Scholar
  87. 87.
    Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16(5):543–558PubMedCrossRefGoogle Scholar
  88. 88.
    Wang H, Shen H, Wang Y, Li Z, Yin H, Zong H, Jiang J, Gu J (2005) Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Lett 579(5):1279–1284PubMedCrossRefGoogle Scholar
  89. 89.
    Wang H, Zhang Q, Zhu D (2003) hSGT interacts with the N-terminal region of myostatin. Biochem Biophys Res Commun 311(4):877–883PubMedCrossRefGoogle Scholar
  90. 90.
    Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66(12):7193–7200PubMedGoogle Scholar
  91. 91.
    Winnefeld M, Grewenig A, Schnolzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312(13):2500–2514PubMedCrossRefGoogle Scholar
  92. 92.
    Winnefeld M, Rommelaere J, Cziepluch C (2004) The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp Cell Res 293(1):43–57PubMedCrossRefGoogle Scholar
  93. 93.
    Wu S-J, Liu F-H, Hu S-M, Wang C (2001) Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilised to interact with distinct tetratricopeptide repeat-containing proteins. Biochem J 359(Pt 2):419–426PubMedCrossRefGoogle Scholar
  94. 94.
    Yamagata A, Kristensen DB, Takeda Y, Miyamoto Y, Okada K, Inamatsu M, Yoshizato K (2002) Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics 2(9):1267–1276PubMedCrossRefGoogle Scholar
  95. 95.
    Yang Z, Wolf IM, Chen H, Periyasamy S, Chen Z, Yong W, Shi S et al (2006) FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 20(11):2682–2694PubMedCrossRefGoogle Scholar
  96. 96.
    Yin H, Wang H, Zong H, Chen X, Wang Y, Yun X, Wu Y, Wang J, Gu J (2006) SGT, a Hsp90b binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Commun 343(4):1153–1158PubMedCrossRefGoogle Scholar
  97. 97.
    Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, Lin LY et al (2007) Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282(7):5026–5036PubMedCrossRefGoogle Scholar
  98. 98.
    Young JM, McNeilly AS (2012) Inhibin removes the inhibitory effects of activin on steroid enzyme expression and androgen production by normal ovarian thecal cells. J Mol Endocrinol 48(1):49–60PubMedCrossRefGoogle Scholar
  99. 99.
    Zeke T, Morrice N, Vázquez-Martin C, Cohen PT (2005) Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J 385(Pt 1):45–56PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lisa K. Philp
    • 1
  • Miriam S. Butler
    • 1
  • Theresa E. Hickey
    • 2
  • Lisa M. Butler
    • 1
  • Wayne D. Tilley
    • 1
  • Tanya K. Day
    • 1
  1. 1.Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health SciencesThe University of AdelaideAdelaideAustralia
  2. 2.Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations