Advertisement

Hormones and Cancer

, Volume 4, Issue 3, pp 123–139 | Cite as

GATA3 Mutations Found in Breast Cancers May Be Associated with Aberrant Nuclear Localization, Reduced Transactivation and Cell Invasiveness

  • Katherine U. Gaynor
  • Irina V. Grigorieva
  • Michael D. Allen
  • Christopher T. Esapa
  • Rosemary A. Head
  • Preethi Gopinath
  • Paul T. Christie
  • M. Andrew Nesbit
  • J. Louise Jones
  • Rajesh V. Thakker
Original Paper

Abstract

Somatic and germline mutations in the dual zinc-finger transcription factor GATA3 are associated with breast cancers expressing the estrogen receptor (ER) and the autosomal dominant hypoparathyroidism–deafness–renal dysplasia syndrome, respectively. To elucidate the role of GATA3 in breast tumorigenesis, we investigated 40 breast cancers that expressed ER, for GATA3 mutations. Six different heterozygous GATA3 somatic mutations were identified in eight tumors, and these consisted of: a frameshifting deletion/insertion (944_945delGGinsAGC), an in-frame deletion of a key arginine residue (991_993delAGG), a seven-nucleotide frameshifting insertion (991_992insTGGAGGA), a frameshifting deletion (1196_1197delGA), and two frameshifting single nucleotide insertions (1224_1225insG found in three tumors and 1224_1225insA). Five of the eight mutations occurred in tumors that retained GATA3 immunostaining, indicating that absence of GATA3 immunostaining is an unreliable predictor of the presence of GATA3 mutations. Luciferase reporter assays, electrophoretic mobility shift assays, immunofluorescence, invasion and proliferation assays demonstrated that the GATA3 mutations resulted in loss (or reduction) of DNA binding, decrease in transactivational activity, and alterations in invasiveness but not proliferation. The 991_992insTGGAGGA (Arg330 frameshift) mutation led to a loss of nuclear localization, yet the 991_993delAGG (Arg330deletion) retained nuclear localization. Investigation of the putative nuclear localization signal (NLS) sites showed that the NLS of GATA3 does not conform to either a classical mono- or bi-partite signal, but contains multiple cooperative NLS elements residing around the N-terminal zinc-finger which comprises residues 264–288. Thus, approximately 20 % ER-positive breast cancers have somatic GATA3 mutations that lead to a loss of GATA3 transactivation activity and altered cell invasiveness.

Keywords

Nuclear Localization Signal T47D Cell Transactivation Activity GATA3 Mutation GATA3 Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Medical Research Council (MRC), UK (grant number G9825289/2004 and G1000467/2010). K.G. was an MRC-funded student.

References

  1. 1.
    Simon MC (1995) Gotta have GATA. Nat Genet 11:9–11PubMedCrossRefGoogle Scholar
  2. 2.
    Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M (1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 18:2812–2822PubMedCrossRefGoogle Scholar
  3. 3.
    Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B et al (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406:419–422PubMedCrossRefGoogle Scholar
  4. 4.
    Nesbit MA, Bowl MR, Harding B, Ali A, Ayala A, Crowe C, Dobbie A et al (2004) Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. J Biol Chem 279:22624–22634PubMedCrossRefGoogle Scholar
  5. 5.
    Ali A, Christie PT, Grigorieva IV, Harding B, Van Esch H, Ahmed SF, Bitner-Glindzicz M et al (2007) Functional characterization of GATA3 mutations causing the hypoparathyroidism–deafness–renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet 16:265–275PubMedCrossRefGoogle Scholar
  6. 6.
    Gaynor KU, Grigorieva IV, Nesbit MA, Cranston T, Gomes T, Gortner L, Thakker RV (2009) A missense GATA3 mutation, Thr272Ile, causes the hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Endocrinol Metab 94:3897–3904PubMedCrossRefGoogle Scholar
  7. 7.
    Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A et al (2004) Mutation of GATA3 in human breast tumors. Oncogene 23:7669–7678PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold JM, Choong DY, Thompson ER, Waddell N, Lindeman GJ, Visvader JE, Campbell IG, Chenevix-Trench G (2010) Frequent somatic mutations of GATA3 in non-BRCA1/BRCA2 familial breast tumors, but not in BRCA1-, BRCA2- or sporadic breast tumors. Breast Cancer Res Treat 119:491–496PubMedCrossRefGoogle Scholar
  9. 9.
    Chanock SJ, Burdett L, Yeager M, Llaca V, Langerod A, Presswalla S, Kaaresen R et al (2007) Somatic sequence alterations in twenty-one genes selected by expression profile analysis of breast carcinomas. Breast Cancer Res 9:R5PubMedCrossRefGoogle Scholar
  10. 10.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404PubMedGoogle Scholar
  11. 11.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409PubMedCrossRefGoogle Scholar
  12. 12.
    Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360PubMedGoogle Scholar
  13. 13.
    Tominaga N, Naoi Y, Shimazu K, Nakayama T, Maruyama N, Shimomura A, Kim S J, Tamaki Y, and Noguchi S (2012) Clinicopathological analysis of GATA3-positive breast cancers with special reference to response to neoadjuvant chemotherapy. Ann Oncol 23(12):3051-7Google Scholar
  14. 14.
    Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209PubMedCrossRefGoogle Scholar
  15. 15.
    Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, Ali A et al (2010) Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 120:2144–2155PubMedCrossRefGoogle Scholar
  16. 16.
    Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:474–478PubMedCrossRefGoogle Scholar
  17. 17.
    Shiga K, Shiga C, Sasano H, Miyazaki S, Yamamoto T, Yamamoto M, Hayashi N, Nishihira T, Mori S (1993) Expression of c-erbB-2 in human esophageal carcinoma cells: overexpression correlated with gene amplification or with GATA-3 transcription factor expression. Anticancer Res 13:1293–1301PubMedGoogle Scholar
  18. 18.
    Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A (2005) Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin lymphomas. Am J Pathol 166:127–134PubMedCrossRefGoogle Scholar
  19. 19.
    Gulbinas A, Berberat PO, Dambrauskas Z, Giese T, Giese N, Autschbach F, Kleeff J, Meuer S, Buchler MW, Friess H (2006) Aberrant gata-3 expression in human pancreatic cancer. J Histochem Cytochem 54:161–169PubMedCrossRefGoogle Scholar
  20. 20.
    Hoch RV, Thompson DA, Baker RJ, Weigel RJ (1999) GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer 84:122–128PubMedCrossRefGoogle Scholar
  21. 21.
    Steenbergen RD, OudeEngberink VE, Kramer D, Schrijnemakers HF, Verheijen RH, Meijer CJ, Snijders PJ (2002) Down-regulation of GATA-3 expression during human papillomavirus-mediated immortalization and cervical carcinogenesis. Am J Pathol 160:1945–1951PubMedCrossRefGoogle Scholar
  22. 22.
    Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One 5:e10696PubMedCrossRefGoogle Scholar
  23. 23.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423PubMedCrossRefGoogle Scholar
  24. 24.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  25. 25.
    Allen MD, Vaziri R, Green M, Chelala C, Brentnall AR, Dreger S, Vallath S et al (2011) Clinical and functional significance of alpha9beta1 integrin expression in breast cancer: a novel cell-surface marker of the basal phenotype that promotes tumour cell invasion. J Pathol 223:646–658PubMedCrossRefGoogle Scholar
  26. 26.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481PubMedGoogle Scholar
  27. 27.
    Krynska B, Del Valle L, Croul S, Gordon J, Katsetos CD, Carbone M, Giordano A, Khalili K (1999) Detection of human neurotropic JC virus DNA sequence and expression of the viral oncogenic protein in pediatric medulloblastomas. Proc Natl Acad Sci U S A 96:11519–11524PubMedCrossRefGoogle Scholar
  28. 28.
    Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52:494–503PubMedCrossRefGoogle Scholar
  29. 29.
    Jorde R, Schirmer H, Wilsgaard T, Joakimsen RM, Mathiesen EB, Njolstad I, Lochen ML et al (2012) Polymorphisms related to the serum 25-hydroxyvitamin d level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromso Study. PLoS One 7:e37295PubMedCrossRefGoogle Scholar
  30. 30.
    Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11:R24PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas GJ, Lewis MP, Whawell SA, Russell A, Sheppard D, Hart IR, Speight PM, Marshall JF (2001) Expression of the alphavbeta6 integrin promotes migration and invasion in squamous carcinoma cells. J Invest Dermatol 117:67–73PubMedCrossRefGoogle Scholar
  32. 32.
    Esapa CT, Head RA, Jeyabalan J, Evans H, Hough TA, Cheeseman MT, McNally EG et al (2012) A mouse with an N-Ethyl-N-Nitrosourea (ENU) induced Trp589Arg Galnt3 mutation represents a model for hyperphosphataemic familial tumoural calcinosis. PLoS One 7:e43205PubMedCrossRefGoogle Scholar
  33. 33.
    Exome Variant Server, NHLBI Exome Sequencing Project (ESP) (2011) Seattle, WA (URL: http://evs.gs.washington.edu/EVS/). Accessed Sept 2012
  34. 34.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  35. 35.
    Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Res 37:D32–D36PubMedCrossRefGoogle Scholar
  36. 36.
    Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166PubMedCrossRefGoogle Scholar
  37. 37.
    DeLano WL (2002) The PyMOL molecular graphics system. Schrödinger, LLC, New YorkGoogle Scholar
  38. 38.
    Yan W, Cao QJ, Arenas RB, Bentley B, Shao R (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. J Biol Chem 285:14042–14051PubMedCrossRefGoogle Scholar
  39. 39.
    Philips AS, Kwok JC, Chong BH (2007) Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem 282:24915–24927PubMedCrossRefGoogle Scholar
  40. 40.
    Yang Z, Gu L, Romeo PH, Bories D, Motohashi H, Yamamoto M, Engel JD (1994) Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 14:2201–2212PubMedGoogle Scholar
  41. 41.
    Shoya Y, Kobayashi T, Koda T, Ikuta K, Kakinuma M, Kishi M (1998) Two proline-rich nuclear localization signals in the amino- and carboxyl-terminal regions of the Borna disease virus phosphoprotein. J Virol 72:9755–9762PubMedGoogle Scholar
  42. 42.
    Yang HY, Evans T (1992) Distinct roles for the two cGATA-1 finger domains. Mol Cell Biol 12:4562–4570PubMedGoogle Scholar
  43. 43.
    Bates DL, Chen Y, Kim G, Guo L, Chen L (2008) Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 381:1292–1306PubMedCrossRefGoogle Scholar
  44. 44.
    Asselin-Labat ML, Sutherland KD, Vaillant F, Gyorki DE, Wu D, Holroyd S, Breslin K et al (2011) Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 31:4609–4622PubMedCrossRefGoogle Scholar
  45. 45.
    Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132PubMedCrossRefGoogle Scholar
  46. 46.
    Holen I, Whitworth J, Nutter F, Evans A, Brown HK, Lefley DV, Barbaric I, Jones M, Ottewell PD (2012) Loss of plakoglobin promotes decreased cell-cell contact, increased invasion, and breast cancer cell dissemination in vivo. Breast Cancer Res 14:R86PubMedCrossRefGoogle Scholar
  47. 47.
    Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, van der Burg B (1995) Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 6:1151–1161PubMedGoogle Scholar
  48. 48.
    Weiss MJ, Orkin SH (1995) GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23:99–107PubMedGoogle Scholar
  49. 49.
    Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952PubMedCrossRefGoogle Scholar
  50. 50.
    Palmeri D, Malim MH (1999) Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 19:1218–1225PubMedGoogle Scholar
  51. 51.
    Shaulsky G, Goldfinger N, Ben-Ze’ev A, Rotter V (1990) Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6565–6577PubMedGoogle Scholar
  52. 52.
    Rogozin IB, Pavlov YI (2003) Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 544:65–85PubMedCrossRefGoogle Scholar
  53. 53.
    Amos W (2010) Heterozygosity and mutation rate: evidence for an interaction and its implications: the potential for meiotic gene conversions to influence both mutation rate and distribution. Bioessays 32:82–90PubMedCrossRefGoogle Scholar
  54. 54.
    Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z (2006) GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127:1041–1055PubMedCrossRefGoogle Scholar
  55. 55.
    Manuylov NL, Smagulova FO, Tevosian SG (2007) Fog2 excision in mice leads to premature mammary gland involution and reduced Esr1 gene expression. Oncogene 26:5204–5213PubMedCrossRefGoogle Scholar
  56. 56.
    Gibbons RJ, Wada T, Fisher CA, Malik N, Mitson MJ, Steensma DP, Fryer A, Goudie DR, Krantz ID, Traeger-Synodinos J (2008) Mutations in the chromatin-associated protein ATRX. Hum Mutat 29:796–802PubMedCrossRefGoogle Scholar
  57. 57.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203PubMedCrossRefGoogle Scholar
  58. 58.
    Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509PubMedCrossRefGoogle Scholar
  59. 59.
    Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623PubMedCrossRefGoogle Scholar
  60. 60.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katherine U. Gaynor
    • 1
  • Irina V. Grigorieva
    • 1
  • Michael D. Allen
    • 2
  • Christopher T. Esapa
    • 1
    • 3
  • Rosemary A. Head
    • 1
    • 3
  • Preethi Gopinath
    • 2
  • Paul T. Christie
    • 1
  • M. Andrew Nesbit
    • 1
  • J. Louise Jones
    • 2
  • Rajesh V. Thakker
    • 1
  1. 1.Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
  2. 2.Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
  3. 3.MRC Mammalian Genetics UnitMRC Harwell, Harwell Science and Innovation CampusOxfordshireUK

Personalised recommendations