Hormones and Cancer

, Volume 4, Issue 2, pp 70–77 | Cite as

Targeted Approaches toward Understanding and Treating Pulmonary Lymphangioleiomyomatosis (LAM)

Review

Abstract

Pulmonary lymphangioleiomyomatosis (LAM) is a rare disease found almost exclusively in women that is characterized by neoplastic growth of atypical smooth muscle-like cells in the lung, destruction of lung parenchyma, and obstruction of lymphatics. These processes lead to the formation of lung cysts, rupture of which results in spontaneous pneumothorax. Progression of LAM often results in loss of pulmonary function and death. LAM affects predominantly women of childbearing age and is exacerbated by pregnancy. The only proven treatment for LAM is lung transplantation, and even then LAM cells will often return to the transplanted lung. However, methodical and targeted approaches toward understanding LAM pathophysiology have led to the discovery of new potential therapeutic avenues. For example, the mutational inactivation of tumor suppressor complex genes tuberous sclerosis complex 1 or tuberous sclerosis complex 2 has been shown to be present in lung LAM cells. These mutations occur sporadically or in association with inherited hamartoma syndrome tuberous sclerosis (TSC). Since TSC genes function as negative regulators of the mammalian target of rapamycin, a major controller of cell growth, metabolism, and survival, rapamycin analogs have recently been used to treat LAM patients with promising results. Similarly, studies focusing on the importance of estrogen in LAM progression have suggested that anti-estrogen therapy might prove to be an alternative means of treating LAM. This minireview summarizes recent progress in understanding LAM pathophysiology, including the latest preclinical and clinical studies, and insights regarding the role of hormones in LAM.

Notes

Acknowledgments

Dr. Vera Krymskaya receives support from the NIH/NHLBI and The LAM Foundation. Dr. Stephen Hammes is supported by the LAM Foundation and the DOD. We apologize to those investigators whose important work we did not discuss for the sake of conciseness.

References

  1. 1.
    Astrinidis A, Khare L, Carsillo T, Smolarek T, Au KS, Northrup H, Henske EP (2000) Mutational analysis of the tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet 37(1):55–57PubMedCrossRefGoogle Scholar
  2. 2.
    Awonuga AO, Shavell VI, Imudia AN, Rotas M, Diamond MP, Puscheck EE (2010) Pathogenesis of benign metastasizing leiomyoma: a review. Obstet Gynecol Surv 65(3):189–195. doi: 10.1097/OGX.0b013e3181d60f93 PubMedCrossRefGoogle Scholar
  3. 3.
    Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358(2):140–151. doi: 10.1056/NEJMoa063564 PubMedCrossRefGoogle Scholar
  4. 4.
    Bowen JM, Cates JM, Kash S, Itani D, Gonzalez A, Huang D, Oliveira A, Bridge JA (2012) Genomic imbalances in benign metastasizing leiomyoma: characterization by conventional karyotypic, fluorescence in situ hybridization, and whole genome SNP array analysis. Cancer Genet 205(5):249–254. doi: 10.1016/j.cancergen.2012.04.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Brunelli A, Catalini G, Fianchini A (1996) Pregnancy exacerbating unsuspected mediastinal lymphangioleiomyomatosis and chylothorax. Int J Gynaecol Obstet 52(3):289–290PubMedCrossRefGoogle Scholar
  6. 6.
    Cai X, Pacheco-Rodriguez G, Fan Q-Y, Haughey M, Samsel L, El-Chemaly S, Wu HP et al (2010) Phenotypic characterization of disseminated cells with TSC2 loss of heterozygosity in patients with lymphangioleiomyomatosis. Am J Resp Crit Care Med 182(11):1410–1418PubMedCrossRefGoogle Scholar
  7. 7.
    Cai S-L, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173(2):279–289PubMedCrossRefGoogle Scholar
  8. 8.
    Carsillo T, Astrinidis A, Henske EP (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 97(11):6085–6090PubMedCrossRefGoogle Scholar
  9. 9.
    Darling TN, Pacheco-Rodriguez G, Gorio A, Lesma E, Walker C, Moss J (2010) Lymphangioleiomyomatosis and TSC2−/− cells. Lymph Res Biol 8(1):59–69. doi: 10.1089/lrb.2009.0031 CrossRefGoogle Scholar
  10. 10.
    Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, Serra AL, Watson PC et al (2011) Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 17(12):4071–4081. doi: 10.1158/1078-0432.ccr-11-0445 PubMedCrossRefGoogle Scholar
  11. 11.
    Demierre M-F, Peter DR, Higgins SB, Gruber EH, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5(12):930–942PubMedCrossRefGoogle Scholar
  12. 12.
    Dilling DF, Gilbert ER, Picken MM, Eby J, Love RB, Le Poole IC (2012) A current viewpoint of lymphangioleiomyomatosis supporting immunotherapeutic treatment options. Am J Respir Cell Mol Biol 46:1–5PubMedCrossRefGoogle Scholar
  13. 13.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi: 10.1126/science.1196371 PubMedCrossRefGoogle Scholar
  14. 14.
    El-Chemaly S, Taveira-DaSilva A, Stylianou MP, Moss J (2009) Statins in lymphangioleiomyomatosis: a word of caution. Eur Respir J 34(2):513–514. doi: 10.1183/09031936.00012709 PubMedCrossRefGoogle Scholar
  15. 15.
    El-Hashemite N, Kwiatkowski DJ (2005) Interferon-γ-Jak-Stat signaling in pulmonary lymphangioleiomyomatosis and renal angiomyolipoma: a potential therapeutic target. Am J Respir Cell Mol Biol 33(3):227–230PubMedCrossRefGoogle Scholar
  16. 16.
    El-Hashemite N, Walker V, Kwiatkowski DJ (2005) Estrogen enhances whereas tamoxifen retards development of Tsc mouse liver hemangioma: a tumor related to renal angiomyolipoma and pulmonary lymphangioleiomyomatosis. Cancer Res 65(6):2474–2481. doi: 10.1158/0008-5472.CAN-04-3840 PubMedCrossRefGoogle Scholar
  17. 17.
    El-Hashemite N, Zhang H, Walker V, Hoffmeister KM, Kwiatkowski DJ (2004) Perturbed IFN-γ-Jak-signal transducers and activators of transcription signaling in tuberous sclerosis mouse models: synergistic effects of rapamycin-IFN-γ treatment. Cancer Res 64(10):3436–3443PubMedCrossRefGoogle Scholar
  18. 18.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635PubMedCrossRefGoogle Scholar
  19. 19.
    Fielhaber JA, Han Y-S, Tan J, Xing S, Biggs CM, Joung K-B, Kristof AS (2009) Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in {alpha}4- and protein phosphatase 2A-dependent fashion. J Biol Chem 284(36):24341–24353. doi: 10.1074/jbc.M109.033530 PubMedCrossRefGoogle Scholar
  20. 20.
    Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D (2007) Selective inhibition of growth of tuberous sclerosis complex 2 Null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res 67(20):9878–9886. doi: 10.1158/0008-5472.can-07-1394 PubMedCrossRefGoogle Scholar
  21. 21.
    Fiore MG, Sanguedolce F, Lolli I, Piscitelli D, Ricco R (2005) Abdominal lymphangioleiomyomatosis in a man with Klinefelter syndrome: the first reported case. Ann Diagn Pathol 9(2):96–100, S1092913404001650PubMedCrossRefGoogle Scholar
  22. 22.
    Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, Dinopoulos A, Thomas G, Crone KR (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59(3):490–498PubMedCrossRefGoogle Scholar
  23. 23.
    Glasgow CG, Steagall WK, Taveira-Dasilva A, Pacheco-Rodriguez G, Cai X, El-Chemaly S, Moses M, Darling T, Moss J (2010) Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med 104(Suppl 1):S45–S58, S0954-6111(10)00135-6PubMedCrossRefGoogle Scholar
  24. 24.
    Glasgow CG, Steagall WK, Taveira-DaSilva A, Pacheco-Rodriguez G, Xiong C, El-Chemaly S, Moses M, Thomas D, Moss J (2010) Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med 104(Supplement 1):S45–S58PubMedCrossRefGoogle Scholar
  25. 25.
    Glasgow CG, Taveira-DaSilva A, Pacheco-Rodriguez G, Steagall WK, Tsukada K, Cai X, El-Chemaly S, Mos J (2009) Involvement of lymphatics in lymphangioleiomyomatosis. Lymph Res Biol 7(4):221–228. doi: 10.1089/lrb.2009.0017 CrossRefGoogle Scholar
  26. 26.
    Goncharova EA, Goncharov DA, Chisolm A, Spaits MS, Lim PN, Cesarone G, Khavin I et al (2008) Interferon β augments tuberous sclerosis complex 2 (TSC2)-dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation. Mol Pharmacol 73(3):778–788. doi: 10.1124/mol.107.040824 PubMedCrossRefGoogle Scholar
  27. 27.
    Goncharova EA, Goncharov DA, Damera G, Tliba O, Amrani Y, Panettieri RA, Krymskaya VP (2009) Signal transducer and activator of transcription 3 is required for abnormal proliferation and survival of TSC2-deficient cells: relevance to pulmonary lymphangioleiomyomatosis. Mol Pharmacol 76(4):766–777PubMedCrossRefGoogle Scholar
  28. 28.
    Goncharova EA, Goncharov DA, Eszterhas A, Hunter DS, Glassberg MK, Yeung RS, Walker CL et al (2002) Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation: a role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis. J Biol Chem 277:30958–30967PubMedCrossRefGoogle Scholar
  29. 29.
    Goncharova EA, Goncharov DA, Fehrenbach M, Khavin I, Duka B, Hino O, Colby TV et al (2012) Prevention of alveolar destruction and airspace enlargement in a mouse model of pulmonary lymphangioleiomyomatosis (LAM). Sci Transl Med 4(154):154ra134PubMedCrossRefGoogle Scholar
  30. 30.
    Goncharova EA, Goncharov DA, Li H, Pimtong W, Stephen L, Khavin I, Krymskaya VP (2011) mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol 31(12):2484–2498. doi: 10.1128/mcb.01061-10 PubMedCrossRefGoogle Scholar
  31. 31.
    Goncharova EA, Goncharov DA, Lim PN, Noonan D, Krymskaya VP (2006) Modulation of cell migration and invasiveness by tumor suppressor TSC2 in Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 34:473–480PubMedCrossRefGoogle Scholar
  32. 32.
    Goncharova E, Goncharov D, Noonan D, Krymskaya VP (2004) TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase. J Cell Biol 167(6):1171–1182PubMedCrossRefGoogle Scholar
  33. 33.
    Goncharova EA, Goncharov DA, Spaits M, Noonan D, Talovskaya E, Eszterhas A, Krymskaya VP (2006) Abnormal smooth muscle cell growth in LAM: role for tumor suppressor TSC2. Am J Respir Cell Mol Biol 34:561–572PubMedCrossRefGoogle Scholar
  34. 34.
    Goncharova EA, Krymskaya VP (2008) Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J Cell Biochem 103:369–382PubMedCrossRefGoogle Scholar
  35. 35.
    Goyle KK, Moore DF Jr, Garrett C, Goyle V (2003) Benign metastasizing leiomyomatosis: case report and review. Am J Clin Oncol 26(5):473–476. doi: 10.1097/01.coc.0000037737.78080 PubMedCrossRefGoogle Scholar
  36. 36.
    Hammes SR, Levin ER (2011) Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology 152(12):4489–4495. doi: 10.1210/en.2011-1470 PubMedCrossRefGoogle Scholar
  37. 37.
    Hayashi T, Kumasaka T, Mitani K, Terao Y, Watanabe M, Oide T, Nakatani Y et al (2011) Prevalence of uterine and adnexal involvement in pulmonary lymphangioleiomyomatosis: a clinicopathologic study of 10 patients. Am J Surg Pathol 35(12):1776–1785. doi: 10.1097/PAS.0b013e318235edbd PubMedCrossRefGoogle Scholar
  38. 38.
    Herry I, Neukirch C, Debray M-P, Mignon F, Crestani B (2007) Dramatic effect of sirolimus on renal angiomyolipomas in a patient with tuberous sclerosis complex. Eur J Intern Med 18(1):76–77. doi: 10.1016/j.ejim.2006.07.017 PubMedCrossRefGoogle Scholar
  39. 39.
    Hino O, Kobayashi T, Mitani H (2002) Prevention of hereditary carcinogenesis. Proc Jpn Acad 78:30–32Google Scholar
  40. 40.
    Hohman DW, Noghrehkar D, Ratnayake S (2008) Lymphangioleiomyomatosis: a review. Eur J Intern Med 19(5):319–324. doi: 10.1016/j.ejim.2007.10.015 PubMedCrossRefGoogle Scholar
  41. 41.
    Inoki K, Guan K-L (2009) Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet 18(R1):R94–R100. doi: 10.1093/hmg/ddp032 PubMedCrossRefGoogle Scholar
  42. 42.
    Inoki K, Li Y, Tian X, Guan K-L (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834PubMedCrossRefGoogle Scholar
  43. 43.
    Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968PubMedCrossRefGoogle Scholar
  44. 44.
    Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRefGoogle Scholar
  45. 45.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson SR (2006) Lymphangioleiomyomatosis. Eur Respir J 27(5):1056–1065. doi: 10.1183/09031936.06.00113303 PubMedGoogle Scholar
  47. 47.
    Johnson SR, Tattersfield AE (1999) Decline in lung function in lymphangioleiomyomatosis: relation to menopause and progesterone treatment. Am J Respir Crit Care Med 160(2):628–633PubMedGoogle Scholar
  48. 48.
    Juvet SC, McCormack FX, Kwiatkowski DJ, Downey GP (2006) Molecular pathogenesis of lymphangioleiomyomatosis: lessons learned from orphans. Am J Respir Cell Mol Biol 36:398–408PubMedCrossRefGoogle Scholar
  49. 49.
    Karbowniczek M, Astrinidis A, Balsara BR, Testa JR, Lium JH, Colby TV, McCormack FX, Henske EP (2003) Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am J Respir Crit Care Med 167(7):976–982. doi: 10.1164/rccm.200208-969OC PubMedCrossRefGoogle Scholar
  50. 50.
    Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141PubMedCrossRefGoogle Scholar
  51. 51.
    Kristof AS, You Z, Han Y-S, Giaid A (2010) Protein expression of urotensin II, urotensin-related peptide and their receptor in the lungs of patients with lymphangioleiomyomatosis. Peptides 31(8):1511–1516. doi: 10.1016/j.peptides.2010.04.017 PubMedCrossRefGoogle Scholar
  52. 52.
    Krymskaya VP (2008) Smooth muscle-like cells in lymphangioleiomyomatosis. Proc Am Thorac Soc 5:119–126PubMedCrossRefGoogle Scholar
  53. 53.
    Krymskaya VP (2012) Treatment option(s) for pulmonary lymphangioleiomyomatosis: progress and current challenges. Am J Respir Cell Mol Biol 46(5):563–565PubMedCrossRefGoogle Scholar
  54. 54.
    Lamb RF, Roy C, Diefenbach TJ, Vinters HV, Johnson MW, Jay DG, Hall A (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biology 2(5):281–287CrossRefGoogle Scholar
  55. 55.
    Lee D-F, Kuo H-P, Chen C-T, Hsu J-M, Chou C-K, Wei Y, Sun H-L et al (2007) IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455PubMedCrossRefGoogle Scholar
  56. 56.
    Lee N, Woodrum C, Nobil A, Rauktys A, Messina M, Dabora S (2009) Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 9(1):8PubMedCrossRefGoogle Scholar
  57. 57.
    Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193PubMedCrossRefGoogle Scholar
  58. 58.
    McCormack FX (2008) Lymphangioleiomyomatosis. Chest 133(2):507–516. doi: 10.1378/chest.07-0898 PubMedCrossRefGoogle Scholar
  59. 59.
    McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364:1595–1606. doi: 10.1056/NEJMoa1100391 PubMedCrossRefGoogle Scholar
  60. 60.
    Meraj R, Wikenheiser-Brokamp KA, Young LR, McCormack FX (2012) Lymphangioleiomyomatosis: new concepts in pathogenesis, diagnosis, and treatment. Semin Respir Crit Care Med 33(05):486–497. doi: 10.1055/s-0032-1325159 PubMedCrossRefGoogle Scholar
  61. 61.
    Ohori NP, Yousem SA, Sonmez-Alpan E, Colby TV (1991) Estrogen and progesterone receptors in lymphangioleiomyomatosis, epithelioid hemangioendothelioma, and sclerosing hemangioma of the lung. Am J Clin Pathol 96(4):529–535PubMedGoogle Scholar
  62. 62.
    Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ et al (2011) Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci 108(30):12455–12460. doi: 10.1073/pnas.1104361108 PubMedCrossRefGoogle Scholar
  63. 63.
    Sahai E, Marshal CJ (2002) Rho-GTPases and cancer. Nat Rev Cancer 2:133–142PubMedCrossRefGoogle Scholar
  64. 64.
    Sarbassov DD, Ali Siraj M, Do-Hyung K, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302PubMedCrossRefGoogle Scholar
  65. 65.
    Sato T, Seyama K, Fujii H, Maruyama H, Setoguchi Y, Iwakami S, Fukuchi Y, Hino O (2002) Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 47(1):20–28. doi: 10.1007/s10038-002-8651-8 PubMedCrossRefGoogle Scholar
  66. 66.
    Schiavina M, Di Scioscio V, Contini P, Cavazza A, Fabiani A, Barberis M, Bini A et al (2007) Pulmonary lymphangioleiomyomatosis in a karyotypically normal man without tuberous sclerosis complex. Am J Respir Crit Care Med 176(1):96–98. doi: 10.1164/rccm.200610-1408CR PubMedCrossRefGoogle Scholar
  67. 67.
    Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262PubMedCrossRefGoogle Scholar
  68. 68.
    Schmidt A, Bickle M, Beck T, Hall MN (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542PubMedCrossRefGoogle Scholar
  69. 69.
    Seyama K, Kumasaka T, Kurihara M, Mitani K, Sato T (2010) Lymphangioleiomyomatosis: a disease involving the lymphatic system. Lymphat Res Biol 8(1):21–31. doi: 10.1089/lrb.2009.0018 PubMedCrossRefGoogle Scholar
  70. 70.
    Shen A, Iseman MD, Waldron JA, King TE (1987) Exacerbation of pulmonary lymphangioleiomyomatosis by exogenous estrogens. Chest 91(5):782–785PubMedCrossRefGoogle Scholar
  71. 71.
    Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP (1998) Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 62(4):810–815. doi: 10.1086/301804 PubMedCrossRefGoogle Scholar
  72. 72.
    Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP (1998) Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 62:810–815PubMedCrossRefGoogle Scholar
  73. 73.
    Taveira-DaSilva AM, Pacheco-Rodriguez G, Moss J (2010) The natural history of lymphangioleiomyomatosis: markers of severity, rate of progression and prognosis. Lymph Res Biol 8(1):9–19. doi: 10.1089/lrb.2009.0024 CrossRefGoogle Scholar
  74. 74.
    Taveira-DaSilva AM, Stylianou MP, Hedin CJ, Hathaway O, Moss J (2004) Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest 126(6):1867–1874. doi: 10.1378/chest.126.6.1867 PubMedCrossRefGoogle Scholar
  75. 75.
    Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268PubMedCrossRefGoogle Scholar
  76. 76.
    Tietze L, Gunther K, Horbe A, Pawlik C, Klosterhalfen B, Handt S, Merkelbach-Bruse S (2000) Benign metastasizing leiomyoma: a cytogenetically balanced but clonal disease. Hum Pathol 31(1):126–128PubMedCrossRefGoogle Scholar
  77. 77.
    Travis WD, Colby TV, Koss MN, Rosado-de-Christenson ML, Müller NL, King TE Jr (2002) AFIP atlas of nontumor pathology: non-neoplastic disorders of the lower respiratory tract. American Registry of Pathology, Washington, DCGoogle Scholar
  78. 78.
    Wahedna I, Cooper S, Williams J, Paterson IC, Britton JR, Tattersfield AE (1994) Relation of pulmonary lymphangio-leiomyomatosis to use of the oral contraceptive pill and fertility in the UK: a national case control study. Thorax 49(9):910–914PubMedCrossRefGoogle Scholar
  79. 79.
    Walker CL, Hunter D, Everitt JI (2003) Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosome Cancer 38(4):349–356. doi: 10.1002/gcc.10281 CrossRefGoogle Scholar
  80. 80.
    Young LR, VanDyke R, Gulleman PM, Inoue Y, Brown KK, Schmidt LS, Linehan WM et al (2010) Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest 138(3):674–681. doi: 10.1378/chest.10-0573 PubMedCrossRefGoogle Scholar
  81. 81.
    Yu J, Astrinidis A, Howard S, Henske EP (2004) Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286(4):L694–L700. doi: 10.1152/ajplung PubMedCrossRefGoogle Scholar
  82. 82.
    Yu J, Henske EP (2010) mTOR activation, lymphangiogenesis, and estrogen-mediated cell survival: the “perfect storm” of pro-metastatic factors in LAM pathogenesis. Lymphat Res Biol 8(1):43–49. doi: 10.1089/lrb.2009.0020 PubMedCrossRefGoogle Scholar
  83. 83.
    Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, Wang C et al (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci U S A 106(8):2635–2640. doi: 10.1073/pnas.0810790106 PubMedCrossRefGoogle Scholar
  84. 84.
    Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, Wang C et al (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci 106(8):2635–2640. doi: 10.1073/pnas.0810790106 PubMedCrossRefGoogle Scholar
  85. 85.
    Zhe X, Schuger L (2004) Combined smooth muscle and melanocytic differentiation in lymphangioleiomyomatosis. J Histochem Cytochem 52(12):1537–1542PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Pulmonary, Allergy and Critical Care Division, Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations