Advertisement

Hormones and Cancer

, Volume 4, Issue 1, pp 36–49 | Cite as

Progesterone-Inducible Cytokeratin 5-Positive Cells in Luminal Breast Cancer Exhibit Progenitor Properties

  • Sunshine Daddario Axlund
  • Byong Hoon Yoo
  • Rachel B. Rosen
  • Jerome Schaack
  • Peter Kabos
  • Daniel V. LaBarbera
  • Carol A. SartoriusEmail author
Original Paper

Abstract

Progestins play a deleterious role in the onset of breast cancer, yet their influence on existing breast cancer and tumor progression is not well understood. In luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancer, progestins induce a fraction of cells to express cytokeratin 5 (CK5), a marker of basal epithelial and progenitor cells in the normal breast. CK5+ cells lose expression of ER and PR and are relatively quiescent, increasing their resistance to endocrine and chemotherapy compared to intratumoral CK5ER+PR+ cells. Characterization of live CK5+ cells has been hampered by a lack of means for their direct isolation. Here, we describe optical (GFP) and bioluminescent (luciferase) reporter models to quantitate and isolate CK5+ cells in luminal breast cancer cell lines utilizing the human KRT5 gene promoter and a viral vector approach. Using this system, we confirmed that the induction of GFP+/CK5+ cells is specific to progestins, is dependent on PR, can be blocked by antiprogestins, and does not occur with other steroid hormones. Progestin-induced, fluorescence-activated cell sorting-isolated CK5+ cells had lower ER and PR mRNA, were slower cycling, and were relatively more invasive and sphere forming than their CK5 counterparts in vitro. Repeated progestin treatment and selection of GFP+ cells enriched for a persistent population of CK5+ cells, suggesting that this transition can be semi-permanent. These data support that in PR+ breast cancers, progestins induce a subpopulation of CK5+ERPR cells with enhanced progenitor properties and have implications for treatment resistance and recurrence in luminal breast cancer.

Keywords

Estrogen Receptor Progesterone Receptor T47D Cell Progesterone Receptor Expression Luminal Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Elaine Fuchs for the gift of the human CK5 promoter fragment, Dean Edwards for the T47D-PRnull cells, Bill Wood for the pA3Luc plasmid, Storey Wilson for assistance with quantitative software analysis, the Molecular Pathology Core, and the University of Colorado Flow Cytometry Core for their expert technical assistance and services. This work was supported by grants from the Cancer League of Colorado ((fellowship to S.D.A., pilot award to D.V.L. and C.A.S.), the Wendy Will Case Foundation (C.A.S.), and the National Institutes of Health R01 CA140985 (C.A.S.).

Supplementary material

12672_2012_127_Fig8_ESM.jpg (34 kb)

Fig. 1. P4-induced CK5+ cells are more invasive and sphere-initiating than CK5 cells. T47DK5pGFP cells were treated with vehicle (EtOH) or 100 nM P4 for 24 h and the GFP−/+ (CK5−/+) fractions isolated by FACS as described. a Sorted cell fractions (50,000 each) were placed in invasion chambers for 24 h and the number of invading cells per field measured by Image J analysis (NIH). Picture denotes representative filters. b Sorted cells (300 each) were placed in mammosphere/3D-Matrigel culture, and the number of spheres ≥50 μm measured by automated counter after 7 days. Merged bright field/DAPI stained images of wells are shown (JPEG 34 kb)

12672_2012_127_MOESM1_ESM.tif (12.2 mb)
High Resolution Image (TIFF 12484 kb)

References

  1. 1.
    Beral V, Reeves G, Bull D, Green J (2011) Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 103(4):296–305PubMedCrossRefGoogle Scholar
  2. 2.
    Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH et al (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304(15):1684–1692PubMedCrossRefGoogle Scholar
  3. 3.
    Horwitz KB, Sartorius CA (2008) Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab 93(9):3295–3298PubMedCrossRefGoogle Scholar
  4. 4.
    Axlund SD, Sartorius CA (2012) Progesterone regulation of stem and progenitor cells in normal and malignant breast. Mol Cell Endocrinol 357(1–2):71–79PubMedCrossRefGoogle Scholar
  5. 5.
    Huggins C, Moon RC, Morii S (1962) Extinction of experimental mammary cancer. I. Estradiol-17beta and progesterone. Proc Natl Acad Sci U S A 48:379–386PubMedCrossRefGoogle Scholar
  6. 6.
    Aldaz CM, Liao QY, LaBate M, Johnston DA (1996) Medroxyprogesterone acetate accelerates the development and increases the incidence of mouse mammary tumors induced by dimethylbenzanthracene. Carcinogenesis 17(9):2069–2072PubMedCrossRefGoogle Scholar
  7. 7.
    Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW (1999) Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res 59(17):4276–4284PubMedGoogle Scholar
  8. 8.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802PubMedCrossRefGoogle Scholar
  9. 9.
    Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465(7299):803–807PubMedCrossRefGoogle Scholar
  10. 10.
    Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et al (2009) DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 150(7):3318–3326PubMedCrossRefGoogle Scholar
  11. 11.
    Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci U S A 105(15):5774–5779PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et al (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468(7320):103–107PubMedCrossRefGoogle Scholar
  13. 13.
    Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ et al (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468(7320):98–102PubMedCrossRefGoogle Scholar
  14. 14.
    Obr AE, Edwards DP (2012) The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 357(1–2):4–17PubMedCrossRefGoogle Scholar
  15. 15.
    Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A et al (2011) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 128(1):45–55PubMedCrossRefGoogle Scholar
  16. 16.
    Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al (2012) Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. doi: 10.1038/onc.2012.275
  17. 17.
    Gusterson B (2009) Do ‘basal-like’ breast cancers really exist? Nat Rev Cancer 9(2):128–134PubMedCrossRefGoogle Scholar
  18. 18.
    Gusterson BA, Ross DT, Heath VJ, Stein T (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7(4):143–148PubMedCrossRefGoogle Scholar
  19. 19.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913PubMedCrossRefGoogle Scholar
  20. 20.
    Boecker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P et al (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 82(6):737–746Google Scholar
  21. 21.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  22. 22.
    Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203(2):661–671PubMedCrossRefGoogle Scholar
  23. 23.
    Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW et al (2012) Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci U S A 109(8):2742–2747PubMedCrossRefGoogle Scholar
  24. 24.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedCrossRefGoogle Scholar
  25. 25.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedCrossRefGoogle Scholar
  26. 26.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313PubMedCrossRefGoogle Scholar
  27. 27.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K et al (2008) The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53PubMedCrossRefGoogle Scholar
  28. 28.
    Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP (2007) The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol 21(2):359–375PubMedCrossRefGoogle Scholar
  29. 29.
    Pink JJ, Bilimoria MM, Assikis J, Jordan VC (1996) Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation. Br J Cancer 74(8):1227–1236PubMedCrossRefGoogle Scholar
  30. 30.
    Byrne C, Fuchs E (1993) Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol Cell Biol 13(6):3176–3190PubMedGoogle Scholar
  31. 31.
    Gordon DF, Woodmansee WW, Lewis SR, James RA, Wood WM, Ridgway EC (1999) Cloning of the mouse somatostatin receptor subtype 5 gene: promoter structure and function. Endocrinology 140(12):5598–5608PubMedCrossRefGoogle Scholar
  32. 32.
    Yoo BH, Axlund SD, Kabos P, Reid BG, Schaack J, Sartorius CA, et al (2012) A High-Content Assay to Identify Small-Molecule Modulators of a Cancer Stem Cell Population in Luminal Breast Cancer. J Biomol Screen 17(9):1211–1220Google Scholar
  33. 33.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRefGoogle Scholar
  34. 34.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273PubMedCrossRefGoogle Scholar
  35. 35.
    Shen T, Horwitz KB, Lange CA (2001) Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294. Mol Cell Biol 21(18):6122–6131PubMedCrossRefGoogle Scholar
  36. 36.
    Cowan RA, Cowan SK, Grant JK (1977) Binding of methyltrienolone (R1881) to a progesterone receptor-like component of human prostatic cytosol. J Endocrinol 74(2):281–289PubMedCrossRefGoogle Scholar
  37. 37.
    Nordeen SK, Kuhnel B, Lawler-Heavner J, Barber DA, Edwards DP (1989) A quantitative comparison of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Mol Endocrinol 3(8):1270–1278PubMedCrossRefGoogle Scholar
  38. 38.
    Ariazi EA, Leitao A, Oprea TI, Chen B, Louis T, Bertucci AM et al (2007) Exemestane’s 17-hydroxylated metabolite exerts biological effects as an androgen. Mol Cancer Ther 6(11):2817–2827PubMedCrossRefGoogle Scholar
  39. 39.
    Li X, Wong J, Tsai SY, Tsai MJ, O’Malley BW (2003) Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol Cell Biol 23(11):3763–3773PubMedCrossRefGoogle Scholar
  40. 40.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319PubMedCrossRefGoogle Scholar
  41. 41.
    Musgrove EA, Lee CS, Sutherland RL (1991) Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol 11(10):5032–5043PubMedGoogle Scholar
  42. 42.
    Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA et al (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15(2):235–252PubMedCrossRefGoogle Scholar
  43. 43.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  44. 44.
    Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14(5):1368–1376PubMedCrossRefGoogle Scholar
  45. 45.
    Boecker W, Buerger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 36(Suppl 1):73–84PubMedCrossRefGoogle Scholar
  46. 46.
    Tran CP, Lin C, Yamashiro J, Reiter RE (2002) Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol Cancer Res 1(2):113–121PubMedGoogle Scholar
  47. 47.
    Uzgare AR, Xu Y, Isaacs JT (2004) In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 91(1):196–205PubMedCrossRefGoogle Scholar
  48. 48.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101PubMedCrossRefGoogle Scholar
  49. 49.
    Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108(19):7950–7955PubMedCrossRefGoogle Scholar
  50. 50.
    Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 108(4):1397–1402PubMedCrossRefGoogle Scholar
  51. 51.
    Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA et al (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7(4):e35569PubMedCrossRefGoogle Scholar
  52. 52.
    Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al (2012) A refined molecular taxonomy of breast cancer. Oncogene 31:1196–1206Google Scholar
  53. 53.
    Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES et al (2010) Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A 107(50):21737–21742PubMedCrossRefGoogle Scholar
  54. 54.
    Clarke CL, Graham J, Roman SD, Sutherland RL (1991) Direct transcriptional regulation of the progesterone receptor by retinoic acid diminishes progestin responsiveness in the breast cancer cell line T-47D. J Biol Chem 266(28):18969–18975PubMedGoogle Scholar
  55. 55.
    Roman SD, Clarke CL, Hall RE, Alexander IE, Sutherland RL (1992) Expression and regulation of retinoic acid receptors in human breast cancer cells. Cancer Res 52(8):2236–2242PubMedGoogle Scholar
  56. 56.
    Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226(2):322–330PubMedCrossRefGoogle Scholar
  57. 57.
    Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, Masui T et al (2003) All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes 52(1):76–84PubMedCrossRefGoogle Scholar
  58. 58.
    Baldassarre G, Boccia A, Bruni P, Sandomenico C, Barone MV, Pepe S et al (2000) Retinoic acid induces neuronal differentiation of embryonal carcinoma cells by reducing proteasome-dependent proteolysis of the cyclin-dependent inhibitor p27. Cell Growth Differ 11(10):517–526PubMedGoogle Scholar
  59. 59.
    Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364PubMedCrossRefGoogle Scholar
  60. 60.
    Koay DC, Zerillo C, Narayan M, Harris LN, DiGiovanna MP (2010) Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: induction of apoptosis by retinoid/trastuzumab combinations. Breast Cancer Res 12(4):R62PubMedCrossRefGoogle Scholar
  61. 61.
    Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A (2006) Clinical trials with retinoids for breast cancer chemoprevention. Endocr Relat Cancer 13(1):51–68PubMedCrossRefGoogle Scholar
  62. 62.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al (2012) Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen dependent gene signatures. Breast Cancer Res Treat 135(2):415–432Google Scholar
  63. 63.
    Santen RJ, Yue W, Heitjan DF (2012) Modeling of the growth kinetics of occult breast tumors: role in interpretation of studies of prevention and menopausal hormone therapy. Cancer Epidemiol Biomark Prev 21(7):1038–1048Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sunshine Daddario Axlund
    • 1
  • Byong Hoon Yoo
    • 2
  • Rachel B. Rosen
    • 1
  • Jerome Schaack
    • 3
  • Peter Kabos
    • 4
  • Daniel V. LaBarbera
    • 2
  • Carol A. Sartorius
    • 1
    Email author
  1. 1.Department of PathologyUniversity of Colorado Denver, Anschutz Medical CenterAuroraUSA
  2. 2.Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Denver, Anschutz Medical CenterAuroraUSA
  3. 3.Department of MicrobiologyUniversity of Colorado Denver, Anschutz Medical CenterAuroraUSA
  4. 4.Division of Medical Oncology, Department of MedicineUniversity of Colorado Denver, Anschutz Medical CenterAuroraUSA

Personalised recommendations