Hormones and Cancer

, Volume 4, Issue 1, pp 1–11 | Cite as

Intratumoral Estrogen Concentration and Expression of Estrogen-Induced Genes in Male Breast Carcinoma: Comparison with Female Breast Carcinoma

  • Kiyoshi Takagi
  • Takuya Moriya
  • Masafumi Kurosumi
  • Kimako Oka
  • Yasuhiro Miki
  • Akiko Ebata
  • Takashi Toshima
  • Shoji Tsunekawa
  • Hiroyuki Takei
  • Hisashi Hirakawa
  • Takanori Ishida
  • Shin-ichi Hayashi
  • Junichi Kurebayashi
  • Hironobu Sasano
  • Takashi Suzuki
Original Paper

Abstract

It is speculated that estrogens play important roles in the male breast carcinoma (MBC) as well as the female breast carcinoma (FBC). However, estrogen concentrations or molecular features of estrogen actions have not been reported in MBC, and biological significance of estrogens remains largely unclear in MBC. Therefore, we examined intratumoral estrogen concentrations, estrogen receptor (ER) α/ERβ status, and expression profiles of estrogen-induced genes in MBC tissues, and compared these with FBC. 17β-Estradiol concentration in MBC (n = 4) was significantly (14-fold) higher than that in non-neoplastic male breast (n = 3) and tended to be higher than that in FBC (n = 7). Results of microarray analysis clearly demonstrated that expression profiles of the two gene lists, which were previously reported as estrogen-induced genes in MCF-7 breast carcinoma cell line, were markedly different between MBC and FBC. In the immunohistochemistry, MBC tissues were frequently positive for aromatase (63 %) and 17β-hydroxysteroid dehydrogenase type 1 (67 %), but not for steroid sulfatase (6.7 %). A great majority (77 %) of MBC showed positive for both ERα and ERβ, and its frequency was significantly higher than FBC cases. These results suggest that estradiol is locally produced in MBC tissue by aromatase. Different expression profiles of the estrogen-induced genes may associate with different estrogen functions in MBC from FBC, which may be partly due to their ERα/ERβ status.

References

  1. 1.
    Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN (2004) Breast carcinoma in men: a population-based study. Cancer 101:51–57PubMedCrossRefGoogle Scholar
  2. 2.
    Nahleh Z, Girnius S (2006) Male breast cancer: a gender issue. Nat Clin Pract Oncol 3:428–437PubMedCrossRefGoogle Scholar
  3. 3.
    Suzuki T, Miki Y, Nakamura Y et al (2005) Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer 12:701–720PubMedCrossRefGoogle Scholar
  4. 4.
    Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574PubMedCrossRefGoogle Scholar
  5. 5.
    Creighton CJ, Cordero KE, Larios JM, Miller RS, Johnson MD, Chinnaiyan AM, Lippman ME, Rae JM (2006) Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors. Genome Biol 7(4):R28, Epub 2006 Apr 7PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki S, Takagi K, Miki Y et al (2012) Nucleobindin 2 in human breast carcinoma as a potent prognostic factor. Cancer Sci 103:136–143PubMedCrossRefGoogle Scholar
  7. 7.
    Leygue E, Dotzlaw H, Watson PH, Murphy LC (1998) Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis. Cancer Res 58:3197–3201PubMedGoogle Scholar
  8. 8.
    Hayashi SI, Eguchi H, Tanimoto K et al (2003) The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr Relat Cancer 10:193–202PubMedCrossRefGoogle Scholar
  9. 9.
    Cutuli B, Le-Nir CC, Serin D et al (2010) Male breast cancer. Evolution of treatment and prognostic factors. Analysis of 489 cases. Crit Rev Oncol Hematol 73:246–254PubMedCrossRefGoogle Scholar
  10. 10.
    Rudlowski C, Friedrichs N, Faridi A et al (2004) Her-2/neu gene amplification and protein expression in primary male breast cancer. Breast Cancer Res Treat 84:215–223PubMedCrossRefGoogle Scholar
  11. 11.
    Murphy CE, Carder PJ, Lansdown MR, Speirs V (2006) Steroid hormone receptor expression in male breast cancer. Eur J Surg Oncol 32:44–47PubMedCrossRefGoogle Scholar
  12. 12.
    Shaaban AM, Ball GR, Brannan RA et al (2012) A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Res Treat 133:949–958PubMedCrossRefGoogle Scholar
  13. 13.
    Sasano H, Kimura M, Shizawa S, Kimura N, Nagura H (1996) Aromatase and steroid receptors in gynecomastia and male breast carcinoma: an immunohistochemical study. J Clin Endocrinol Metab 81:3063–3067PubMedCrossRefGoogle Scholar
  14. 14.
    Miki Y, Suzuki T, Tazawa C et al (2007) Aromatase localization in human breast cancer tissues: possible interactions between intratumoral stromal and parenchymal cells. Cancer Res 67:3945–3954PubMedCrossRefGoogle Scholar
  15. 15.
    Takagi K, Miki Y, Nagasaki S et al (2010) Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. Endocr Relat Cancer 17:415–430PubMedCrossRefGoogle Scholar
  16. 16.
    Ebata A, Suzuki T, Takagi K et al (2012) Oestrogen-induced genes in ductal carcinoma in situ (DCIS): their comparison with invasive ductal carcinoma. Endocr Relat Cancer 19:485–496PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki T, Miki Y, Nakata T et al (2003) Steroid sulfatase and estrogen sulfotransferase in normal human tissue and breast carcinoma. J Steroid Biochem Mol Biol 86:449–454PubMedCrossRefGoogle Scholar
  18. 18.
    Penning TM, Steckelbroeck S, Bauman DR et al (2006) Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors. Mol Cell Endocrinol 248:182–191PubMedCrossRefGoogle Scholar
  19. 19.
    Suzuki T, Miki Y, Moriya T et al (2007) 5Alpha-reductase type 1 and aromatase in breast carcinoma as regulators of in situ androgen production. Int J Cancer 120:285–291PubMedCrossRefGoogle Scholar
  20. 20.
    Ishibashi H, Suzuki T, Suzuki S et al (2005) Progesterone receptor in non-small cell lung cancer—a potent prognostic factor and possible target for endocrine therapy. Cancer Res 65:6450–6458PubMedCrossRefGoogle Scholar
  21. 21.
    Greenspan FS, Strewler GJ (1997) Basic & clinical endocrinology. Appleton Lange, StamfordGoogle Scholar
  22. 22.
    Chetrite GS, Cortes-Prieto J, Philippe JC, Wright F, Pasqualini JR (2000) Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol 72:23–27PubMedCrossRefGoogle Scholar
  23. 23.
    Nirmul D, Pegoraro RJ, Jialal I, Naidoo C, Joubert SM (1983) The sex hormone profile of male patients with breast cancer. Br J Cancer 48:423–427PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H (2011) Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol 340:148–153PubMedCrossRefGoogle Scholar
  25. 25.
    Ellis MJ, Miller WR, Tao Y et al (2009) Aromatase expression and outcomes in the P024 neoadjuvant endocrine therapy trial. Breast Cancer Res Treat 116:371–378PubMedCrossRefGoogle Scholar
  26. 26.
    Geisler J, Suzuki T, Helle H et al (2010) Breast cancer aromatase expression evaluated by the novel antibody 677: correlations to intra-tumor estrogen levels and hormone receptor status. J Steroid Biochem Mol Biol 118:237–241PubMedCrossRefGoogle Scholar
  27. 27.
    Poutanen M, Isomaa V, Lehto VP, Vihko R (1992) Immunological analysis of 17 beta-hydroxysteroid dehydrogenase in benign and malignant human breast tissue. Int J Cancer 50:386–390PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H (2000) 17Beta-hydroxysteroid dehydrogenase type 1 and type 2 in human breast carcinoma: a correlation to clinicopathological parameters. Br J Cancer 82:518–523PubMedCrossRefGoogle Scholar
  29. 29.
    Yamamoto Y, Yamashita J, Toi M et al (2003) Immunohistochemical analysis of estrone sulfatase and aromatase in human breast cancer tissues. Oncol Rep 10:791–796PubMedGoogle Scholar
  30. 30.
    Tsunoda Y, Shimizu Y, Tsunoda A, Takimoto M, Sakamoto MA, Kusano M (2006) Steroid sulfatase in breast carcinoma and change of serum estrogens levels after operation. Acta Oncol 45:584–589PubMedCrossRefGoogle Scholar
  31. 31.
    Sonne-Hansen K, Lykkesfeldt AE (2005) Endogenous aromatization of testosterone results in growth stimulation of the human MCF-7 breast cancer cell line. J Steroid Biochem Mol Biol 93:25–34PubMedCrossRefGoogle Scholar
  32. 32.
    Korde LA, Zujewski JA, Kamin L et al (2010) Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol 28:2114–2122PubMedCrossRefGoogle Scholar
  33. 33.
    Gustafsson JA (2006) ERbeta scientific visions translate to clinical uses. Climacteric 9:156–160PubMedCrossRefGoogle Scholar
  34. 34.
    Williams C, Edvardsson K, Lewandowski SA, Ström A, Gustafsson JA (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27:1019–1032PubMedCrossRefGoogle Scholar
  35. 35.
    Nakopoulou L, Lazaris AC, Panayotopoulou EG et al (2004) The favourable prognostic value of oestrogen receptor beta immunohistochemical expression in breast cancer. J Clin Pathol 57:523–528PubMedCrossRefGoogle Scholar
  36. 36.
    Honma N, Horii R, Iwase T et al (2005) Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin Oncol 26:3727–3734CrossRefGoogle Scholar
  37. 37.
    Weber-Chappuis K, Bieri-Burger S, Hurlimann J (1996) Comparison of prognostic markers detected by immunohistochemistry in male and female breast carcinomas. Eur J Cancer 32A:1686–1692PubMedCrossRefGoogle Scholar
  38. 38.
    Johansson I, Nilsson C, Berglund P et al (2012) Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker. Breast Cancer Res 14:R31PubMedCrossRefGoogle Scholar
  39. 39.
    Chen Y, Olopade OI (2008) MYC in breast tumor progression. Expert Rev Anticancer Ther 8:1689–1698PubMedCrossRefGoogle Scholar
  40. 40.
    Suzuki T, Moriya T, Sugawara A, Ariga N, Takabayashi H, Sasano H (2001) Retinoid receptors in human breast carcinoma: possible modulators of in situ estrogen metabolism. Breast Cancer Res Treat 65:31–40PubMedCrossRefGoogle Scholar
  41. 41.
    Gaben AM, Sabbah M, Redeuilh G, Bedin M, Mester J (2012) Ligand-free estrogen receptor activity complements IGF1R to induce the proliferation of the MCF-7 breast cancer cells. BMC Cancer 12:291PubMedCrossRefGoogle Scholar
  42. 42.
    Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Z, Dahiya S, Provencher H et al (2007) The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clin Cancer Res 13:6327–6334PubMedCrossRefGoogle Scholar
  44. 44.
    Guérin M, Sheng ZM, Andrieu N, Riou G (1990) Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 5:131–135PubMedGoogle Scholar
  45. 45.
    Cavaillès V, Dauvois S, L’Horset F et al (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14:3741–3751PubMedGoogle Scholar
  46. 46.
    Augereau P, Badia E, Balaguer P et al (2006) Negative regulation of hormone signaling by RIP140. J Steroid Biochem Mol Biol 102:51–59PubMedCrossRefGoogle Scholar
  47. 47.
    Creekmore AL, Walt KA, Schultz-Norton JR et al (2008) The role of retinoblastoma-associated proteins 46 and 48 in estrogen receptor alpha mediated gene expression. Mol Cell Endocrinol 291:79–86PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang TF, Yu SQ, Wang ZY (2007) RbAp46 inhibits estrogen-stimulated progression of neoplastigenic breast epithelial cells. Anticancer Res 27:3205–3209PubMedGoogle Scholar
  49. 49.
    Chen YH, Wu ZQ, Zhao YL et al (2012) FHL2 inhibits the Id3-promoted proliferation and invasive growth of human MCF-7 breast cancer cells. Chin Med J Engl 125:2329–2333PubMedGoogle Scholar
  50. 50.
    Gupta GP, Perk J, Acharyya S et al (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104:19506–19511PubMedCrossRefGoogle Scholar
  51. 51.
    Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A (2011) The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 1816:119–131PubMedGoogle Scholar
  52. 52.
    Sengupta S, Sharma CG, Jordan VC (2010) Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm Mol Biol Clin Investig 2:235–243PubMedGoogle Scholar
  53. 53.
    Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24:1656–1664PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Kiyoshi Takagi
    • 1
  • Takuya Moriya
    • 2
  • Masafumi Kurosumi
    • 3
  • Kimako Oka
    • 4
  • Yasuhiro Miki
    • 5
  • Akiko Ebata
    • 6
  • Takashi Toshima
    • 7
  • Shoji Tsunekawa
    • 8
  • Hiroyuki Takei
    • 9
  • Hisashi Hirakawa
    • 4
  • Takanori Ishida
    • 6
  • Shin-ichi Hayashi
    • 10
  • Junichi Kurebayashi
    • 11
  • Hironobu Sasano
    • 5
    • 12
  • Takashi Suzuki
    • 1
  1. 1.Department of Pathology and HistotechnologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of Pathology 2Kawasaki Medical SchoolKurashikiJapan
  3. 3.Department of PathologySaitama Cancer CenterSaitamaJapan
  4. 4.Department of SurgeryTohoku Kosai HospitalSendaiJapan
  5. 5.Department of Anatomic PathologyTohoku University Graduate School of MedicineSendaiJapan
  6. 6.Department of Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
  7. 7.Department of SurgeryTohoku Rosai HospitalSendaiJapan
  8. 8.Department of SurgeryKansai Electric Power HospitalOsakaJapan
  9. 9.Division of Breast SurgerySaitama Cancer CenterSaitamaJapan
  10. 10.Department of Molecular and Functional DynamicsTohoku University Graduate School of MedicineSendaiJapan
  11. 11.Department of Breast and Thyroid SurgeryKawasaki Medical SchoolKurashikiJapan
  12. 12.Department of PathologyTohoku University HospitalSendaiJapan

Personalised recommendations