Hormones and Cancer

, Volume 2, Issue 6, pp 385–392 | Cite as

Targeted Therapies for Adrenocortical Carcinoma: IGF and Beyond

  • Michael J. Demeure
  • Kimberly J. Bussey
  • Lawrence S. Kirschner
Article

Abstract

Standard chemotherapy for adrenocortical cancer currently is under evaluation in the context of the recently completed FIRM-ACT evaluating the combination of mitotane with either streptozocin or etoposide, cisplatin, and doxorubicin. New agents are eagerly sought by the ACC community that hopes to make progress against this deadly disease. Investigators have begun to dissect the molecular and genomic context of ACC with a goal of identifying potential novel therapeutic agents. One gene consistently overexpressed in ACC is insulin growth factor type 2. Targeting its receptor IGF1R has shown encouraging results in ACC cell lines and against murine xenografts. As a result, clinical trials to evaluate agents targeting the IGF1R have been done including mitotane and IMC-A12 (a monoclonal antibody) and the GALACCTIC trial that has just completed accrual to evaluate OSI-906, a small molecule IGF1R antagonist. On the horizon are other agents targeting other tyrosine kinases, including EGF and FGF, and novel strategies such as individualized tumor analysis to select treatment.

Keywords

Adrenocortical cancer Targeted therapy IGF1R Tyrosine Kinase inhibitors 

References

  1. 1.
    Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  2. 2.
    Barlaskar FM, Spalding AC, Heaton JH et al (2009) Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma. J Clin Endocrinol Metab 94:204–212PubMedCrossRefGoogle Scholar
  3. 3.
    Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6:714–727PubMedCrossRefGoogle Scholar
  4. 4.
    Rodon J, DeSantos V, Ferry RJ, Kurzrock R (2008) Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials. Mol Cancer Ther 7:2575–2588PubMedCrossRefGoogle Scholar
  5. 5.
    Buck E, Eyzaguirre A, Rosenfeld-Franklin M et al (2008) Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 68:8322–8332PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd DB (2003) Insulin and cancer. Integr Cancer Ther 2:315–329PubMedCrossRefGoogle Scholar
  7. 7.
    Dastrup E, Demeure MJ, Bussey KJ. Adrenocortical carcinoma cell lines are sensitive to compounds targeting the G2/M transition [abstract]. In Proceedings of the 101st Annual Meeting of the American Association for Cancer Research. Washington. AACR; 2010:Abstract nr 3672Google Scholar
  8. 8.
    Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475PubMedCrossRefGoogle Scholar
  9. 9.
    Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H (1990) Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21:277–282PubMedCrossRefGoogle Scholar
  10. 10.
    Sasano H, Suzuki T, Shizawa S, Kato K, Nagura H (1994) Transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol 7:741–746PubMedGoogle Scholar
  11. 11.
    Samnotra V, Vassilopoulou-Sellin R, Fojo A et al (2007) A phase II trial of gefitinib monotherapy in patients with unresectable adrenocortical carcinoma (ACC). J Clin Oncol 25:15527Google Scholar
  12. 12.
    Quinkler M, Hahner S, Wortmann S et al (2008) Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. J Clin Endocrinol Metab 93:2057–2062PubMedCrossRefGoogle Scholar
  13. 13.
    de Fraipont F, El Atifi M, Cherradi N et al (2005) Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90:1819–1829PubMedCrossRefGoogle Scholar
  14. 14.
    Giordano TJ, Thomas DG, Kuick R et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162:521–531PubMedCrossRefGoogle Scholar
  15. 15.
    Slater EP, Diehl SM, Langer P et al (2006) Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors. Eur J Endocrinol 154:587–598PubMedCrossRefGoogle Scholar
  16. 16.
    West AN, Neale GA, Pounds S et al (2007) Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67:600–608PubMedCrossRefGoogle Scholar
  17. 17.
    Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129PubMedCrossRefGoogle Scholar
  18. 18.
    Trudel S, Li ZH, Wei E et al (2005) CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105:2941–2948PubMedCrossRefGoogle Scholar
  19. 19.
    Xin X, Abrams TJ, Hollenbach PW et al (2006) CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin Cancer Res 12:4908–4915PubMedCrossRefGoogle Scholar
  20. 20.
    Chase A, Grand FH, Cross NC (2007) Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 110:3729–3734PubMedCrossRefGoogle Scholar
  21. 21.
    Loilome W, Joshi AD, ap Rhys CM et al (2009) Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 94:359–366PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang H, Masuoka L, Baker K et al (2007) FP-1039 (FGFR1:Fc), A Soluble FGFR1 receptor antagonist, inhibits tumor growth and angiogenesis. In AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics Discovery, Biology and Clinical Applications. San Francisco, CA.; 2007Google Scholar
  23. 23.
    Tolcher A, Papadopoulos K, Agnew J et al (2009) Preliminary results of a phase 1 study of FP-1039 (FGFR1:Fc), a novel antagonist of multiple fibroblast growth factor (FGF) ligands, in patients with advanced malignancies. Mol Cancer Ther 8:A103Google Scholar
  24. 24.
    Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225PubMedCrossRefGoogle Scholar
  25. 25.
    Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038PubMedCrossRefGoogle Scholar
  26. 26.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  27. 27.
    Tadjine M, Lampron A, Ouadi L, Bourdeau I (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68:264–270Google Scholar
  28. 28.
    Gaujoux S, Tissier F, Groussin L et al (2008) Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 93:4135–4140PubMedCrossRefGoogle Scholar
  29. 29.
    Tissier F, Cavard C, Groussin L et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65:7622–7627PubMedGoogle Scholar
  30. 30.
    Seki M, Tanaka K, Kikuchi-Yanoshita R et al (1992) Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum Genet 89:298–300PubMedCrossRefGoogle Scholar
  31. 31.
    de Reynies A, Assie G, Rickman DS et al (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27:1108–1115PubMedCrossRefGoogle Scholar
  32. 32.
    Curtin JC, Lorenzi MV (2010) Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1:563–577PubMedGoogle Scholar
  33. 33.
    Cha JY, Jung J-E, Lee K-H et al (2010) Anti-tumor activity of novel small molecule Wnt signaling inhibitor, CWP232291, in multiple myeloma. In 52nd American Society for Hematology Annual Meeting. Orlando, FL:3038Google Scholar
  34. 34.
    Garber K (2009) Drugging the Wnt pathway: problems and progress. J Natl Cancer Inst 101:548–550PubMedCrossRefGoogle Scholar
  35. 35.
    Sierra JR, Cepero V, Giordano S (2010) Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 9:75PubMedCrossRefGoogle Scholar
  36. 36.
    Cunningham MP, Thomas H, Marks C et al (2008) Co-targeting the EGFR and IGF-IR with anti-EGFR monoclonal antibody ICR62 and the IGF-IR tyrosine kinase inhibitor NVP-AEW541 in colorectal cancer cells. Int J Oncol 33:1107–1113PubMedGoogle Scholar
  37. 37.
    Jin Q, Esteva FJ (2008) Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 13:485–498PubMedCrossRefGoogle Scholar
  38. 38.
    Huang F, Greer A, Hurlburt W et al (2009) The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res 69:161–170PubMedCrossRefGoogle Scholar
  39. 39.
    Takahari D, Yamada Y, Okita NT et al (2009) Relationships of insulin-like growth factor-1 receptor and epidermal growth factor receptor expression to clinical outcomes in patients with colorectal cancer. Oncology 76:42–48PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes CJ, Ohshiro K, Rayala SK, El-Naggar AK, Kumar R (2007) Insulin-like growth factor receptor as a therapeutic target in head and neck cancer. Clin Cancer Res 13:4291–4299PubMedCrossRefGoogle Scholar
  41. 41.
    Folkman J (1975) Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82:96–100PubMedGoogle Scholar
  42. 42.
    Zetter BR (2008) The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8:647–654PubMedCrossRefGoogle Scholar
  43. 43.
    Escorcia FE, Henke E, McDevitt MR et al (2010) Selective killing of tumor neovasculature paradoxically improves chemotherapy delivery to tumors. Cancer Res 70:9277–9286PubMedCrossRefGoogle Scholar
  44. 44.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  45. 45.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRefGoogle Scholar
  46. 46.
    D'Agostino RB (2011) Changing end points in breast-cancer drug approval—the Avastin story. N Engl J Med 365(2):e2PubMedCrossRefGoogle Scholar
  47. 47.
    Quinkler M, Kroiss M, Hahner S et al (2011) Sunitinib in refractory adrenocortical carcinoma: results of a phase II trial. Endocr Abstr (in press)Google Scholar
  48. 48.
    Shojaei F, Lee JH, Simmons BH et al (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70:10090–10100PubMedCrossRefGoogle Scholar
  49. 49.
    Smith SC, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9:253–264PubMedCrossRefGoogle Scholar
  50. 50.
    Cook LM, Hurst DR, Welch DR (2011) Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 21:113–122PubMedCrossRefGoogle Scholar
  51. 51.
    Hurst DR, Welch DR (2011) Metastasis suppressor genes at the interface between the environment and tumor cell growth. Int Rev Cell Mol Biol 286:107–180PubMedCrossRefGoogle Scholar
  52. 52.
    Iiizumi M, Liu W, Pai SK, Furuta E, Watabe K (2008) Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta 1786:87–104PubMedGoogle Scholar
  53. 53.
    Addadi Y, Moskovits N, Granot D et al (2010) p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res 70:9650–9658PubMedCrossRefGoogle Scholar
  54. 54.
    Sidhu S, Martin E, Gicquel C et al (2005) Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol 31:549–554PubMedCrossRefGoogle Scholar
  55. 55.
    Ronchi CL, Sbiera S, Kraus L et al (2009) Expression of excision repair cross complementing group 1 and prognosis in adrenocortical carcinoma patients treated with platinum-based chemotherapy. Endocr Relat Cancer 16:907–918PubMedCrossRefGoogle Scholar
  56. 56.
    Berruti A, Terzolo M, Sperone P et al (2005) Etoposide, doxorubicin and cisplatin plus mitotane in the treatment of advanced adrenocortical carcinoma: a large prospective phase II trial. Endocr Relat Cancer 12:657–666PubMedCrossRefGoogle Scholar
  57. 57.
    Demeure MJ, Stephan E, Sinari S et al (2011) Preclinical investigation of nanoparticle albumin-bound paclitaxel as a potential treatment for adrenocortical cancer. Ann Surg (in press)Google Scholar
  58. 58.
    Fallo F, Pilon C, Barzon L et al (1998) Paclitaxel is an effective antiproliferative agent on the human NCI-H295 adrenocortical carcinoma cell line. Chemotherapy 44:129–134PubMedCrossRefGoogle Scholar
  59. 59.
    Stephan EA, Chung TH, Grant CS et al (2008) Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther 7:425–431PubMedCrossRefGoogle Scholar
  60. 60.
    Eelen G, Vanden Bempt I, Verlinden L et al (2008) Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy. Oncogene 27:4233–4241PubMedCrossRefGoogle Scholar
  61. 61.
    Ye L, Santarpia L, Gagel RF (2010) The evolving field of tyrosine kinase inhibitors in the treatment of endocrine tumors. Endocr Rev 31:578–599PubMedCrossRefGoogle Scholar
  62. 62.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6:465–477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael J. Demeure
    • 1
  • Kimberly J. Bussey
    • 1
  • Lawrence S. Kirschner
    • 2
  1. 1.Clinical Translational Research DivisionTranslational Genomics Research InstitutePhoenixUSA
  2. 2.Department of Endocrinology, Diabetes, and MetabolismThe Ohio State UniversityColumbusUSA

Personalised recommendations